Menu
April 21, 2020  |  

Tracking short-term changes in the genetic diversity and antimicrobial resistance of OXA-232-producing Klebsiella pneumoniae ST14 in clinical settings.

To track stepwise changes in genetic diversity and antimicrobial resistance in rapidly evolving OXA-232-producing Klebsiella pneumoniae ST14, an emerging carbapenem-resistant high-risk clone, in clinical settings.Twenty-six K. pneumoniae ST14 isolates were collected by the Korean Nationwide Surveillance of Antimicrobial Resistance system over the course of 1 year. Isolates were subjected to whole-genome sequencing and MIC determinations using 33 antibiotics from 14 classes.Single-nucleotide polymorphism (SNP) typing identified 72 unique SNP sites spanning the chromosomes of the isolates, dividing them into three clusters (I, II and III). The initial isolate possessed two plasmids with 18 antibiotic-resistance genes, including blaOXA-232, and exhibited resistance to 11 antibiotic classes. Four other plasmids containing 12 different resistance genes, including blaCTX-M-15 and strA/B, were introduced over time, providing additional resistance to aztreonam and streptomycin. Moreover, chromosomal integration of insertion sequence Ecp1-blaCTX-M-15 mediated the inactivation of mgrB responsible for colistin resistance in four isolates from cluster III. To the best of our knowledge, this is the first description of K. pneumoniae ST14 resistant to both carbapenem and colistin in South Korea. Furthermore, although some acquired genes were lost over time, the retention of 12 resistance genes and inactivation of mgrB provided resistance to 13 classes of antibiotics.We describe stepwise changes in OXA-232-producing K. pneumoniae ST14 in vivo over time in terms of antimicrobial resistance. Our findings contribute to our understanding of the evolution of emerging high-risk K. pneumoniae clones and provide reference data for future outbreaks.Copyright © 2019 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Increased prevalence of Escherichia coli strains from food carrying blaNDM and mcr-1-bearing plasmids that structurally resemble those of clinical strains, China, 2015 to 2017.

Introduction: Emergence of resistance determinants of blaNDM and mcr-1 has undermined the antimicrobial effectiveness of the last line drugs carbapenems and colistin. Aim: This work aimed to assess the prevalence of blaNDM and mcr-1 in E. coli strains collected from food in Shenzhen, China, during the period 2015 to 2017. Methods: Multidrug-resistant E. coli strains were isolated from food samples. Plasmids encoding mcr-1 or blaNDM genes were characterised and compared with plasmids found in clinical isolates.ResultsAmong 1,166 non-repeated cephalosporin-resistant E. coli strains isolated from 2,147 food samples, 390 and 42, respectively, were resistant to colistin and meropenem, with five strains being resistant to both agents. The rate of resistance to colistin increased significantly (p?


April 21, 2020  |  

Spreading Patterns of NDM-Producing Enterobacteriaceae in Clinical and Environmental Settings in Yangon, Myanmar.

The spread of carbapenemase-producing Enterobacteriaceae (CPE), contributing to widespread carbapenem resistance, has become a global concern. However, the specific dissemination patterns of carbapenemase genes have not been intensively investigated in developing countries, including Myanmar, where NDM-type carbapenemases are spreading in clinical settings. In the present study, we phenotypically and genetically characterized 91 CPE isolates obtained from clinical (n = 77) and environmental (n = 14) samples in Yangon, Myanmar. We determined the dissemination of plasmids harboring genes encoding NDM-1 and its variants using whole-genome sequencing and plasmid analysis. IncFII plasmids harboring blaNDM-5 and IncX3 plasmids harboring blaNDM-4 or blaNDM-7 were the most prevalent plasmid types identified among the isolates. The IncFII plasmids were predominantly carried by clinical isolates of Escherichia coli, and their clonal expansion was observed within the same ward of a hospital. In contrast, the IncX3 plasmids were found in phylogenetically divergent isolates from clinical and environmental samples classified into nine species, suggesting widespread dissemination of plasmids via horizontal transfer. Half of the environmental isolates were found to possess IncX3 plasmids, and this type of plasmid was confirmed to transfer more effectively to recipient organisms at a relatively low temperature (25°C) compared to the IncFII plasmid. Moreover, various other plasmid types were identified harboring blaNDM-1, including IncFIB, IncFII, IncL/M, and IncA/C2, among clinical isolates of Klebsiella pneumoniae or Enterobacter cloacae complex. Overall, our results highlight three distinct patterns of the dissemination of blaNDM-harboring plasmids among CPE isolates in Myanmar, contributing to a better understanding of their molecular epidemiology and dissemination in a setting of endemicity.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Diverse Vectors and Mechanisms Spread New Delhi Metallo-ß-Lactamases among Carbapenem-Resistant Enterobacteriaceae in the Greater Boston Area.

New Delhi metallo-beta-lactamases (NDMs) are an uncommon but emerging cause of carbapenem resistance in the United States. Genomic factors promoting their domestic spread remain poorly characterized. A prospective genomic surveillance program among Boston-area hospitals identified multiple new occurrences of NDM-carrying strains of Escherichia coli and Enterobacter cloacae complex in inpatient and outpatient settings, representing the first occurrences of NDM-mediated resistance since initiating genomic surveillance in 2011. Cases included domestic patients with no international exposures. PacBio sequencing of isolates identified strain characteristics, resistance genes, and the complement of mobile vectors mediating spread. Analyses revealed a common 3,114-bp region containing the blaNDM gene, with carriage of this conserved region among unique strains by diverse transposon and plasmid backbones. Functional studies revealed a broad capacity for blaNDM transmission by conjugation, transposition, and complex interplasmid recombination events. NDMs represent a rapidly spreading form of drug resistance that can occur in inpatient and outpatient settings and in patients without international exposures. In contrast to Tn4401-based spread of Klebsiella pneumoniae carbapenemases (KPCs), diverse transposable elements mobilize NDM enzymes, commonly with other resistance genes, enabling naive strains to acquire multi- and extensively drug-resistant profiles with single transposition or plasmid conjugation events. Genomic surveillance provides effective means to rapidly identify these gene-level drivers of resistance and mobilization in order to inform clinical decisions to prevent further spread.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Whole genome sequencing of NDM-1-producing serotype K1 ST23 hypervirulent Klebsiella pneumoniae in China.

The emergence and spread of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) is causing worldwide concern, whereas NDM-producing hvKP is still rare. Here we report the complete genome sequence characteristics of an NDM-1-producing ST23 type clinical hvKP in PR China.Capsular polysaccharide serotyping was performed by PCR. The complete genome sequence of isolate 3214 was obtained using both the Illumina Hiseq platform and Pacbio RS platform. Multilocus sequence type was identified by submitting the genome sequence to mlst 2.0 and the antimicrobial resistance genes and plasmid replicons were identified using ResFinder and PlasmidFinder, respectively. Transferability of the blaNDM-1-bearing plasmid was determined by conjugation experiment, S1 pulsed-field gel electrophoresis and Southern hybridization.Isolate 3214 was classified to ST23 and belonged to the K1 capsular serotype. The isolate’s total genome size was 6 171 644?bp with a G+C content of 56.39 %, consisting of a 5 448 209?bp chromosome and seven plasmids. The resistome included 18 types of antibiotic resistance genes. Fourteen resistance genes including blaNDM-1 and blaCTX-M-14 were located on plasmids and five also including blaCTX-M-14 were in the chromosome. Plasmid pNDM_3214 carrying blaNDM-1 harboured six types of resistance genes surrounded by insertion sequences and was conjugative. The worldwide pLVPK-like virulence plasmid harbouring rmpA2 and rmpA was also found in this isolate.This study provides basic information of phenotypic and genomic features of ST23 CR-hvKP isolate 3214. Our data highlights the potential risk of spread of NDM-1-producing ST23 hvKP.


April 21, 2020  |  

Genetic characterization and potential molecular dissemination mechanism of tet(31) gene in Aeromonas caviae from an oxytetracycline wastewater treatment system.

Recently, the rarely reported tet(31) tetracycline resistance determinant was commonly found in Aeromonas salmonicida, Gallibacterium anatis, and Oblitimonas alkaliphila isolated from farming animals and related environment. However, its distribution in other bacteria and potential molecular dissemination mechanism in environment are still unknown. The purpose of this study was to investigate the potential mechanism underlying dissemination of tet(31) by analysing the tet(31)-carrying fragments in A. caviae strains isolated from an aerobic biofilm reactor treating oxytetracycline bearing wastewater. Twenty-three A. caviae strains were screened for the tet(31) gene by polymerase chain reaction (PCR). Three strains (two harbouring tet(31), one not) were subjected to whole genome sequencing using the PacBio RSII platform. Seventeen A. caviae strains carried the tet(31) gene and exhibited high resistance levels to oxytetracycline with minimum inhibitory concentrations (MICs) ranging from 256 to 512?mg/L. tet(31) was comprised of the transposon Tn6432 on the chromosome of A. caviae, and Tn6432 was also found in 15 additional tet(31)-positive A. caviae isolates by PCR. More important, Tn6432 was located on an integrative conjugative element (ICE)-like element, which could mediate the dissemination of the tet(31)-carrying transposon Tn6432 between bacteria. Comparative analysis demonstrated that Tn6432 homologs with the structure ISCR2-?phzF-tetR(31)-tet(31)-?glmM-sul2 were also carried by A. salmonicida, G. anatis, and O. alkaliphila, suggesting that this transposon can be transferred between species and even genera. This work provides the first report on the identification of the tet(31) gene in A. caviae, and will be helpful in exploring the dissemination mechanisms of tet(31) in water environment.Copyright © 2018. Published by Elsevier B.V.


April 21, 2020  |  

Characterization of NDM-5- and CTX-M-55-coproducing Escherichia coli GSH8M-2 isolated from the effluent of a wastewater treatment plant in Tokyo Bay.

New Delhi metallo-ß-lactamase (NDM)-5-producing Enterobacteriaceae have been detected in rivers, sewage, and effluents from wastewater treatment plants (WWTPs). Environmental contamination due to discharged effluents is of particular concern as NDM variants may be released into waterways, thereby posing a risk to humans. In this study, we collected effluent samples from a WWTP discharged into a canal in Tokyo Bay, Japan.Testing included the complete genome sequencing of Escherichia coli GSH8M-2 isolated from the effluent as well as a gene network analysis.The complete genome sequencing of GSH8M-2 revealed that it was an NDM-5-producing E. coli strain sequence type ST542, which carries multiple antimicrobial resistance genes for ß-lactams, quinolone, tetracycline, trimethoprim-sulfamethoxazole, florfenicol/chloramphenicol, kanamycin, and fosfomycin. The blaNDM-5 gene was found in the IncX3 replicon plasmid pGSH8M-2-4. Gene network analysis using 142 IncX3 plasmid sequences suggested that pGSH8M-2-4 is related to both clinical isolates of  E. coli and Klebsiella species in Eastern Asia. GSH8M-2 also carries the blaCTX-M-55 gene in IncX1 plasmid pGSH8M-2-3.This is the first report of environmental NDM-5-producing E. coli isolated from a WWTP in Japan. NDM-5 detection is markedly increasing in veterinary and clinical settings, suggesting that dual ß-lactamases, such as NDM-5 and CTX-M-55, might be acquired through multiple steps in environment settings. Environmental contamination through WWTP effluents that contain producers of NDM variants could be an emerging potential health hazard. Thus, regular monitoring of WWTP effluents is important for the detection of antimicrobial-resistant bacteria that may be released into the waterways and nearby communities.


April 21, 2020  |  

Plasmid analysis of Escherichia coli isolates from South Korea co-producing NDM-5 and OXA-181 carbapenemases.

Recently, Escherichia coli isolates co-producing New Delhi metallo-ß-lactamase (NDM)-5 and oxacillinase (OXA)-181 were identified in a tertiary-care hospital of South Korea. Isolate CC1702-1 was collected from urine in January 2017 and isolate CC1706-1 was recovered from a transtracheal aspirate of a hospitalized patient in May 2017. Carbapenemase genes were identified by multiplex PCR and sequencing, and whole genome sequencing was performed subsequently using the PacBio RSII system. Both E. coli isolates belonged to the same clone (ST410) and were resistant to all ß-lactams including carbapenems. We obtained whole plasmid sequences of the isolates: pCC1702-NDM-5 from CC1702-1 and pCC1706-NDM-5 and pCC1706-OXA-181 from CC1706-1. The two E. coli isolates belonged to the same clone (ST410) and they were completely resistant to all ß-lactams, as well as carbapenems. Two blaNDM-5-harboring plasmids belonged to the same incompatibility group, IncFIA/B, and consisted of 79,613?bp and 111,890?bp with 87 and 130 coding sequences, respectively. The genetic structures of the two blaNDM-5-bearing plasmids, which were distinct from the blaNDM-5-bearing plasmids from the Klebsiella pneumoniae isolates previously transmitted from the United Arab Emirates (UAE) to South Korea, differed from each other. While pCC1702-NDM-5 showed high degree of identity with the plasmid from a multidrug-resistant isolate of Citrobacter fruendii P5571 found in China, pCC1706-NDM-5 was very similar to the plasmid from a multidrug-resistant isolate of E. coli AMA1176 found in Denmark. pCC1706-OXA-181, which was a 51?kb, self-transmissible IncX3 plasmid, was identical to the E. coli plasmids pAMA1167-OXA-181 from Denmark and pOXA-181-WCHEC14828 from China. Plasmids harboring blaNDM-5 in E. coli isolates might not be transferred from K. pneumoniae isolates co-producing NDM-5 and OXA-181. They probably originated from multiple sources.Copyright © 2019 Elsevier Inc. All rights reserved.


April 21, 2020  |  

Characterization of an NDM-5 carbapenemase-producing Escherichia coli ST156 isolate from a poultry farm in Zhejiang, China.

The emergence of carbapenem-resistant Enterobacteriaceae strains has posed a severe threat to public health in recent years. The mobile elements carrying the New Delhi metallo-ß-lactqtamase (NDM) gene have been regarded as the major mechanism leading to the rapid increase of carbapenem-resistant Enterobacteriaceae strains isolated from clinics and animals.We describe an NDM-5-producing Escherichia coli strain, ECCRA-119 (sequence type 156 [ST156]), isolated from a poultry farm in Zhejiang, China. ECCRA-119 is a multidrug-resistant (MDR) isolate that exhibited resistance to 27 antimicrobial compounds, including imipenem and meropenem, as detected by antimicrobial susceptibility testing (AST). The complete genome sequence of the ECCRA-119 isolate was also obtained using the PacBio RS II platform. Eleven acquired resistance genes were identified in the chromosome; four were detected in plasmid pTB201, while six were detected in plasmid pTB202. Importantly, the carbapenem-resistant gene blaNDM-5 was detected in the IncX3 plasmid pTB203. In addition, seven virulence genes and one metal-resistance gene were also detected. The results of conjugation experiments and the transfer regions identification indicated that the blaNDM-5-harboring plasmid pTB203 could be transferred between E. coli strains.The results reflected the severe bacterial resistance in a poultry farm in Zhejiang province and increased our understanding of the presence and transmission of the blaNDM-5 gene.


April 21, 2020  |  

Genome plasticity favours double chromosomal Tn4401b-blaKPC-2 transposon insertion in the Pseudomonas aeruginosa ST235 clone.

Pseudomonas aeruginosa Sequence Type 235 is a clone that possesses an extraordinary ability to acquire mobile genetic elements and has been associated with the spread of resistance genes, including genes that encode for carbapenemases. Here, we aim to characterize the genetic platforms involved in resistance dissemination in blaKPC-2-positive P. aeruginosa ST235 in Colombia.In a prospective surveillance study of infections in adult patients attended in five ICUs in five distant cities in Colombia, 58 isolates of P. aeruginosa were recovered, of which, 27 (46.6%) were resistant to carbapenems. The molecular analysis showed that 6 (22.2%) and 4 (14.8%) isolates harboured the blaVIM and blaKPC-2 genes, respectively. The four blaKPC-2-positive isolates showed a similar PFGE pulsotype and belonged to ST235. Complete genome sequencing of a representative ST235 isolate shows a unique chromosomal contig of 7097.241?bp with eight different resistance genes identified and five transposons: a Tn6162-like with ant(2?)-Ia, two Tn402-like with ant(3?)-Ia and blaOXA-2 and two Tn4401b with blaKPC-2. All transposons were inserted into the genomic islands. Interestingly, the two Tn4401b copies harbouring blaKPC-2 were adjacently inserted into a new genomic island (PAGI-17) with traces of a replicative transposition process. This double insertion was probably driven by several structural changes within the chromosomal region containing PAGI-17 in the ST235 background.This is the first report of a double Tn4401b chromosomal insertion in P. aeruginosa, just within a new genomic island (PAGI-17). This finding indicates once again the great genomic plasticity of this microorganism.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.