Menu
April 21, 2020  |  

Complete genome sequence provides insights into the quorum sensing-related spoilage potential of Shewanella baltica 128 isolated from spoiled shrimp.

Shewanella baltica 128 is a specific spoilage organism (SSO) isolated from the refrigerated shrimp that results in shrimp spoilage. This study reported the complete genome sequencing of this strain, with the primary annotations associated with amino acid transport and metabolism (8.66%), indicating that S. baltica 128 has good potential for degrading proteins. In vitro experiments revealed Shewanella baltica 128 could adapt to the stress conditions by regulating its growth and biofilm formation. Genes that related to the spoilage-related metabolic pathways, including trimethylamine metabolism (torT), sulfur metabolism (cysM), putrescine metabolism (speC), biofilm formation (rpoS) and serine protease production (degS), were identified. Genes (LuxS, pfs, LuxR and qseC) that related to the specific QS system were also identified. Complete genome sequence of S. baltica 128 provide insights into the QS-related spoilage potential, which might provide novel information for the development of new approaches for spoilage detection and prevention based on QS target.Copyright © 2019. Published by Elsevier Inc.


April 21, 2020  |  

Information about variations in multiple copies of bacterial 16S rRNA genes may aid in species identification.

Variable region analysis of 16S rRNA gene sequences is the most common tool in bacterial taxonomic studies. Although used for distinguishing bacterial species, its use remains limited due to the presence of variable copy numbers with sequence variation in the genomes. In this study, 16S rRNA gene sequences, obtained from completely assembled whole genome and Sanger electrophoresis sequencing of cloned PCR products from Serratia fonticola GS2, were compared. Sanger sequencing produced a combination of sequences from multiple copies of 16S rRNA genes. To determine whether the variant copies of 16S rRNA genes affected Sanger sequencing, two ratios (5:5 and 8:2) with different concentrations of cloned 16S rRNA genes were used; it was observed that the greater the number of copies with similar sequences the higher its chance of amplification. Effect of multiple copies for taxonomic classification of 16S rRNA gene sequences was investigated using the strain GS2 as a model. 16S rRNA copies with the maximum variation had 99.42% minimum pairwise similarity and this did not have an effect on species identification. Thus, PCR products from genomes containing variable 16S rRNA gene copies can provide sufficient information for species identification except from species which have high similarity of sequences in their 16S rRNA gene copies like the case of Bacillus thuringiensis and Bacillus cereus. In silico analysis of 1,616 bacterial genomes from long-read sequencing was also done. The average minimum pairwise similarity for each phylum was reported with their average genome size and average “unique copies” of 16S rRNA genes and we found that the phyla Proteobacteria and Firmicutes showed the highest amount of variation in their copies of their 16S rRNA genes. Overall, our results shed light on how the variations in the multiple copies of the 16S rRNA genes of bacteria can aid in appropriate species identification.


April 21, 2020  |  

Complete Genome Sequence of an N-Acyl Homoserine Lactone Producer, Breoghania sp. Strain L-A4, Isolated from Rhizosphere of Phragmites australis in a Coastal Wetland.

The Breoghania sp. strain L-A4 was isolated from the rhizosphere of Phragmites australis in the Qinhaungdao coastal wetland in China. Here, we present the complete genome sequence of strain L-A4, which consists of a chromosome of 5,029,620?bp with a G+C content of 64.53% and 4,964 coding DNA sequences. This strain was the first detected to produce N-acyl homoserine lactone (AHL) signals in a member of this genus.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.