April 21, 2020  |  

A microbial factory for defensive kahalalides in a tripartite marine symbiosis.

Chemical defense against predators is widespread in natural ecosystems. Occasionally, taxonomically distant organisms share the same defense chemical. Here, we describe an unusual tripartite marine symbiosis, in which an intracellular bacterial symbiont (“Candidatus Endobryopsis kahalalidefaciens”) uses a diverse array of biosynthetic enzymes to convert simple substrates into a library of complex molecules (the kahalalides) for chemical defense of the host, the alga Bryopsis sp., against predation. The kahalalides are subsequently hijacked by a third partner, the herbivorous mollusk Elysia rufescens, and employed similarly for defense. “Ca E. kahalalidefaciens” has lost many essential traits for free living and acts as a factory for kahalalide production. This interaction between a bacterium, an alga, and an animal highlights the importance of chemical defense in the evolution of complex symbioses.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020  |  

Genome Analyses of a New Mycoplasma Species from the Scorpion Centruroides vittatus.

Arthropod Mycoplasma are little known endosymbionts in insects, primarily known as plant disease vectors. Mycoplasma in other arthropods such as arachnids are unknown. We report the first complete Mycoplasma genome sequenced, identified, and annotated from a scorpion, Centruroides vittatus, and designate it as Mycoplasma vittatus We find the genome is at least a 683,827 bp single circular chromosome with a GC content of 42.7% and with 987 protein-coding genes. The putative virulence determinants include 11 genes associated with the virulence operon associated with protein synthesis or DNA transcription and ten genes with antibiotic and toxic compound resistance. Comparative analysis revealed that the M. vittatus genome is smaller than other Mycoplasma genomes and exhibits a higher GC content. Phylogenetic analysis shows M. vittatus as part of the Hominis group of Mycoplasma As arthropod genomes accumulate, further novel Mycoplasma genomes may be identified and characterized. Copyright © 2019 Yamashita et al.


April 21, 2020  |  

Petunia-and Arabidopsis-Specific Root Microbiota Responses to Phosphate Supplementation

Phosphorus (P) is a limiting element for plant growth. Several root microbes, including arbuscular mycorrhizal fungi (AMF), have the capacity to improve plant nutrition and their abundance is known to depend on P fertility. However, how complex root-associated bacterial and fungal communities respond to various levels of P supplementation remains ill-defined. Here we investigated the responses of the root-associated bacteria and fungi to varying levels of P supply using 16S rRNA gene and internal transcribed spacer amplicon sequencing. We grew Petunia, which forms symbiosis with AMF, and the nonmycorrhizal model species Arabidopsis as a control in a soil that is limiting in plant-available P and we then supplemented the plants with complete fertilizer solutions that varied only in their phosphate concentrations. We searched for microbes, whose abundances varied by P fertilization, tested whether a core microbiota responding to the P treatments could be identified and asked whether bacterial and fungal co-occurrence patterns change in response to the varying P levels. Root microbiota composition varied substantially in response to the varying P application. A core microbiota was not identified as different bacterial and fungal groups responded to low-P conditions in Arabidopsis and Petunia. Microbes with P-dependent abundance patterns included Mortierellomycotina in Arabidopsis, while in Petunia, they included AMF and their symbiotic endobacteria. Of note, the P-dependent root colonization by AMF was reliably quantified by sequencing. The fact that the root microbiotas of the two plant species responded differently to low-P conditions suggests that plant species specificity would need to be considered for the eventual development of microbial products that improve plant P nutrition.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.