Menu
September 22, 2019  |  

The first whole transcriptomic exploration of pre-oviposited early chicken embryos using single and bulked embryonic RNA-sequencing.

The chicken is a valuable model organism, especially in evolutionary and embryology research because its embryonic development occurs in the egg. However, despite its scientific importance, no transcriptome data have been generated for deciphering the early developmental stages of the chicken because of practical and technical constraints in accessing pre-oviposited embryos.Here, we determine the entire transcriptome of pre-oviposited avian embryos, including oocyte, zygote, and intrauterine embryos from Eyal-giladi and Kochav stage I (EGK.I) to EGK.X collected using a noninvasive approach for the first time. We also compare RNA-sequencing data obtained using a bulked embryo sequencing and single embryo/cell sequencing technique. The raw sequencing data were preprocessed with two genome builds, Galgal4 and Galgal5, and the expression of 17,108 and 26,102 genes was quantified in the respective builds. There were some differences between the two techniques, as well as between the two genome builds, and these were affected by the emergence of long intergenic noncoding RNA annotations.The first transcriptome datasets of pre-oviposited early chicken embryos based on bulked and single embryo sequencing techniques will serve as a valuable resource for investigating early avian embryogenesis, for comparative studies among vertebrates, and for novel gene annotation in the chicken genome.


September 22, 2019  |  

Long-read sequencing of chicken transcripts and identification of new transcript isoforms.

The chicken has long served as an important model organism in many fields, and continues to aid our understanding of animal development. Functional genomics studies aimed at probing the mechanisms that regulate development require high-quality genomes and transcript annotations. The quality of these resources has improved dramatically over the last several years, but many isoforms and genes have yet to be identified. We hope to contribute to the process of improving these resources with the data presented here: a set of long cDNA sequencing reads, and a curated set of new genes and transcript isoforms not currently represented in the most up-to-date genome annotation currently available to the community of researchers who rely on the chicken genome.


September 22, 2019  |  

Transcriptome profiling of two ornamental and medicinal papaver herbs.

The Papaver spp. (Papaver rhoeas (Corn poppy) and Papaver nudicaule (Iceland poppy)) genera are ornamental and medicinal plants that are used for the isolation of alkaloid drugs. In this study, we generated 700 Mb of transcriptome sequences with the PacBio platform. They were assembled into 120,926 contigs, and 1185 (82.2%) of the benchmarking universal single-copy orthologs (BUSCO) core genes were completely present in our assembled transcriptome. Furthermore, using 128 Gb of Illumina sequences, the transcript expression was assessed at three stages of Papaver plant development (30, 60, and 90 days), from which we identified 137 differentially expressed transcripts. Furthermore, three co-occurrence heat maps are generated from 51 different plant genomes along with the Papaver transcriptome, i.e., secondary metabolite biosynthesis, isoquinoline alkaloid biosynthesis (BIA) pathway, and cytochrome. Sixty-nine transcripts in the BIA pathway along with 22 different alkaloids (quantified with LC-QTOF-MS/MS) were mapped into the BIA KEGG map (map00950). Finally, we identified 39 full-length cytochrome transcripts and compared them with other genomes. Collectively, this transcriptome data, along with the expression and quantitative metabolite profiles, provides an initial recording of secondary metabolites and their expression related to Papaver plant development. Moreover, these profiles could help to further detail the functional characterization of the various secondary metabolite biosynthesis and Papaver plant development associated problems.


September 22, 2019  |  

Recent developments in using advanced sequencing technologies for the genomic studies of lignin and cellulose degrading microorganisms.

Lignin is a complex polyphenyl aromatic compound which exists in tight associations with cellulose and hemicellulose to form plant primary and secondary cell wall. Lignocellulose is an abundant renewable biomaterial present on the earth. It has gained much attention in the scientific community in recent years because of its potential applications in bio-based industries. Microbial degradation of lignocellulose polymers was well studied in wood decaying fungi. Based on the plant materials they degrade these fungi were classified as white rot, brown rot and soft rot. However, some groups of bacteria belonging to the actinomycetes, a-proteobacteria and ß-proteobacteria were also found to be efficient in degrading lignocellulosic biomass but not well understood unlike the fungi. In this review we focus on recent advancements deployed for finding and understanding the lignocellulose degradation by microorganisms. Conventional molecular methods like sequencing 16s rRNA and Inter Transcribed Spacer (ITS) regions were used for identification and classification of microbes. Recent progression in genomics mainly next generation sequencing technologies made the whole genome sequencing of microbes possible in a great ease. The whole genome sequence studies reveals high quality information about genes and canonical pathways involved in the lignin and other cell wall components degradation.


September 22, 2019  |  

Improving eukaryotic genome annotation using single molecule mRNA sequencing.

The advantages of Pacific Biosciences (PacBio) single-molecule real-time (SMRT) technology include long reads, low systematic bias, and high consensus read accuracy. Here we use these attributes to improve on the genome annotation of the parasitic hookworm Ancylostoma ceylanicum using PacBio RNA-Seq.We sequenced 192,888 circular consensus sequences (CCS) derived from cDNAs generated using the CloneTech SMARTer system. These SMARTer-SMRT libraries were normalized and size-selected providing a robust population of expressed structural genes for subsequent genome annotation. We demonstrate PacBio mRNA sequences based genome annotation improvement, compared to genome annotation using conventional sequencing-by-synthesis alone, by identifying 1609 (9.2%) new genes, extended the length of 3965 (26.7%) genes and increased the total genomic exon length by 1.9 Mb (12.4%). Non-coding sequence representation (primarily from UTRs based on dT reverse transcription priming) was particularly improved, increasing in total length by fifteen-fold, by increasing both the length and number of UTR exons. In addition, the UTR data provided by these CCS allowed for the identification of a novel SL2 splice leader sequence for A. ceylanicum and an increase in the number and proportion of functionally annotated genes. RNA-seq data also confirmed some of the newly annotated genes and gene features.Overall, PacBio data has supported a significant improvement in gene annotation in this genome, and is an appealing alternative or complementary technique for genome annotation to the other transcript sequencing technologies.


September 22, 2019  |  

Tracking alternatively spliced isoforms from long reads by SpliceHunter.

Alternative splicing increases the functional complexity of a genome by generating multiple isoforms and potentially proteins from the same gene. Vast amounts of alternative splicing events are routinely detected by short read deep sequencing technologies but their functional interpretation is hampered by an uncertain transcript context. Emerging long-read sequencing technologies provide a more complete picture of full-length transcript sequences. We introduce SpliceHunter, a tool for the computational interpretation of long reads generated by for example Pacific Biosciences instruments. SpliceHunter defines and tracks isoforms and novel transcription units across time points, compares their splicing pattern to a reference annotation, and translates them into potential protein sequences.


September 22, 2019  |  

Transcriptome-wide survey of pseudorabies virus using next- and third-generation sequencing platforms.

Pseudorabies virus (PRV) is an alphaherpesvirus of swine. PRV has a large double-stranded DNA genome and, as the latest investigations have revealed, a very complex transcriptome. Here, we present a large RNA-Seq dataset, derived from both short- and long-read sequencing. The dataset contains 1.3 million 100?bp paired-end reads that were obtained from the Illumina random-primed libraries, as well as 10 million 50?bp single-end reads generated by the Illumina polyA-seq. The Pacific Biosciences RSII non-amplified method yielded 57,021 reads of inserts (ROIs) aligned to the viral genome, the amplified method resulted in 158,396 PRV-specific ROIs, while we obtained 12,555 ROIs using the Sequel platform. The Oxford Nanopore’s MinION device generated 44,006 reads using their regular cDNA-sequencing method, whereas 29,832 and 120,394 reads were produced by using the direct RNA-sequencing and the Cap-selection protocols, respectively. The raw reads were aligned to the PRV reference genome (KJ717942.1). Our provided dataset can be used to compare different sequencing approaches, library preparation methods, as well as for validation and testing bioinformatic pipelines.


September 22, 2019  |  

Characterization of the dynamic transcriptome of a herpesvirus with long-read Single Molecule Real-Time Sequencing.

Herpesvirus gene expression is co-ordinately regulated and sequentially ordered during productive infection. The viral genes can be classified into three distinct kinetic groups: immediate-early, early, and late classes. In this study, a massively parallel sequencing technique that is based on PacBio Single Molecule Real-time sequencing platform, was used for quantifying the poly(A) fraction of the lytic transcriptome of pseudorabies virus (PRV) throughout a 12-hour interval of productive infection on PK-15 cells. Other approaches, including microarray, real-time RT-PCR and Illumina sequencing are capable of detecting only the aggregate transcriptional activity of particular genomic regions, but not individual herpesvirus transcripts. However, SMRT sequencing allows for a distinction between transcript isoforms, including length- and splice variants, as well as between overlapping polycistronic RNA molecules. The non-amplified Isoform Sequencing (Iso-Seq) method was used to analyse the kinetic properties of the lytic PRV transcripts and to then classify them accordingly. Additionally, the present study demonstrates the general utility of long-read sequencing for the time-course analysis of global gene expression in practically any organism.


September 22, 2019  |  

The dynamic landscape of fission yeast meiosis alternative-splice isoforms.

Alternative splicing increases the diversity of transcriptomes and proteomes in metazoans. The extent to which alternative splicing is active and functional in unicellular organisms is less understood. Here, we exploit a single-molecule long-read sequencing technique and develop an open-source software program called SpliceHunter to characterize the transcriptome in the meiosis of fission yeast. We reveal 14,353 alternative splicing events in 17,669 novel isoforms at different stages of meiosis, including antisense and read-through transcripts. Intron retention is the major type of alternative splicing, followed by alternate “intron in exon.” Seven hundred seventy novel transcription units are detected; 53 of the predicted proteins show homology in other species and form theoretical stable structures. We report the complexity of alternative splicing along isoforms, including 683 intra-molecularly co-associated intron pairs. We compare the dynamics of novel isoforms based on the number of supporting full-length reads with those of annotated isoforms and explore the translational capacity and quality of novel isoforms. The evaluation of these factors indicates that the majority of novel isoforms are unlikely to be both condition-specific and translatable but consistent with the possibility of biologically functional novel isoforms. Moreover, the co-option of these unusual transcripts into newly born genes seems likely. Together, the results of this study highlight the diversity and dynamics at the isoform level in the sexual development of fission yeast. © 2017 Kuang et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

Root endophytes and invasiveness: no difference between native and non-native Phragmites in the Great Lakes Region

Microbial interactions could play an important role in plant invasions. If invasive plants associate with relatively more mutualists or fewer pathogens than their native counterparts, then microbial communities could foster plant invasiveness. Studies examining the effects of microbes on invasive plants commonly focus on a single microbial group (e.g., bacteria) or measure only plant response to microbes, not documenting the specific taxa associating with invaders. We surveyed root microbial communities associated with co-occurring native and non-native lineages of Phragmites australis, across Michigan, USA. Our aim was to determine whether (1) plant lineage was a stronger predictor of root microbial community composition than environmental variables and (2) the non-native lineage associated with more mutualistic and/or fewer pathogenic microbes than the native lineage. We used microscopy and culture-independent molecular methods to examine fungal colonization rate and community composition in three major microbial groups (bacteria, fungi, and oomycetes) within roots. We also used microbial functional databases to assess putative functions of the observed microbial taxa. While fungal colonization of roots was significantly higher in non-native Phragmites than the native lineage, we found no differences in root microbial community composition or potential function between the two Phragmites lineages. Community composition did differ significantly by site, with soil saturation playing a significant role in structuring communities in all three microbial groups. The relative abundance of some specific bacterial taxa did differ between Phragmites lineages at the phylum and genus level (e.g., Proteobacteria, Firmicutes). Purported function of root fungi and respiratory mode of root bacteria also did not differ between native and non-native Phragmites. We found no evidence that native and non-native Phragmites harbored distinct root microbial communities; nor did those communities differ functionally. Therefore, if the trends revealed at our sites are widespread, it is unlikely that total root microbial communities are driving invasion by non-native Phragmites plants.


September 22, 2019  |  

SMRT sequencing of full-length transcriptome of flea beetle Agasicles hygrophila (Selman and Vogt).

This study was aimed at generating the full-length transcriptome of flea beetle Agasicles hygrophila (Selman and Vogt) using single-molecule real-time (SMRT) sequencing. Four developmental stages of A. hygrophila, including eggs, larvae, pupae, and adults were harvested for isolating total RNA. The mixed samples were used for SMRT sequencing to generate the full-length transcriptome. Based on the obtained transcriptome data, alternative splicing event, simple sequence repeat (SSR) analysis, coding sequence prediction, transcript functional annotation, and lncRNA prediction were performed. Total 9.45?Gb of clean reads were generated, including 335,045 reads of insert (ROI) and 158,085 full-length non-chimeric (FLNC) reads. Transcript clustering analysis of FLNC reads identified 40,004 consensus isoforms, including 31,015 high-quality ones. After removing redundant reads, 28,982 transcripts were obtained. Total 145 alternative splicing events were predicted. Additionally, 12,753 SSRs and 16,205 coding sequences were identified based on SSR analysis. Furthermore, 24,031 transcripts were annotated in eight functional databases, and 4,198 lncRNAs were predicted. This is the first study to perform SMRT sequencing of the full-length transcriptome of A. hygrophila. The obtained transcriptome may facilitate further exploration of the genetic data of A. hygrophila and uncover the interactions between this insect and the ecosystem.


September 22, 2019  |  

High resolution annotation of zebrafish transcriptome using long-read sequencing.

With the emergence of zebrafish as an important model organism, a concerted effort has been made to study its transcriptome. This effort is limited, however, by gaps in zebrafish annotation, which are especially pronounced concerning transcripts dynamically expressed during zygotic genome activation (ZGA). To date, short-read sequencing has been the principal technology for zebrafish transcriptome annotation. In part because these sequence reads are too short for assembly methods to resolve the full complexity of the transcriptome, the current annotation is rudimentary. By providing direct observation of full-length transcripts, recently refined long-read sequencing platforms can dramatically improve annotation coverage and accuracy. Here, we leveraged the SMRT platform to study the transcriptome of zebrafish embryos before and after ZGA. Our analysis revealed additional novelty and complexity in thehttps://www.ncbi.nlm.nih.gov/pubmed/nfidence novel transcripts that originated from previously unannotated loci and 1835 high-confidence new isoforms in previously annotated genes. We validated these findings using a suite of computational approaches including structural prediction, sequence homology, and functional conservation analyses, as well as by confirmatory transcript quantification with short-read sequencing data. Our analyses provided insight into new homologs and paralogs of functionally important proteins and noncoding RNAs, isoform switching occurrences, and different classes of novel splicing events. Several novel isoforms representing distinct splicing events were validated through PCR experiments, including the discovery and validation of a novel 8-kb transcript spanning multiple mir-430 elements, an important driver of early development. Our study provides a significantly improved zebrafish transcriptome annotation resource.© 2018 Nudelman et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken.

The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also an important livestock species. We describe a novel approach to data integration to generate an mRNA expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues.Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets explored comparable transcriptomic space. The network analysis tool Graphia was used to extract clusters of co-expressed genes from the resulting expression atlas, many of which were tissue or cell-type restricted, contained transcription factors that have previously been implicated in their regulation, or were otherwise associated with biological processes, such as the cell cycle. The atlas provides a resource for the functional annotation of genes that currently have only a locus ID. We cross-referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression (CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of the expansion of tissue macrophage populations during development.Expression profiles obtained from public RNA-seq datasets – despite being generated by different laboratories using different methodologies – can be made comparable to each other. This meta-analytic approach to RNA-seq can be extended with new datasets from novel tissues, and is applicable to any species.


September 22, 2019  |  

A new standard for crustacean genomes: The highly contiguous, annotated genome assembly of the clam shrimp Eulimnadia texana reveals HOX gene order and identifies the sex chromosome.

Vernal pool clam shrimp (Eulimnadia texana) are a promising model system due to their ease of lab culture, short generation time, modest sized genome, a somewhat rare stable androdioecious sex determination system, and a requirement to reproduce via desiccated diapaused eggs. We generated a highly contiguous genome assembly using 46× of PacBio long read data and 216× of Illumina short reads, and annotated using Illumina RNAseq obtained from adult males or hermaphrodites. Of the 120?Mb genome 85% is contained in the largest eight contigs, the smallest of which is 4.6?Mb. The assembly contains 98% of transcripts predicted via RNAseq. This assembly is qualitatively different from scaffolded Illumina assemblies: It is produced from long reads that contain sequence data along their entire length, and is thus gap free. The contiguity of the assembly allows us to order the HOX genes within the genome, identifying two loci that contain HOX gene orthologs, and which approximately maintain the order observed in other arthropods. We identified a partial duplication of the Antennapedia complex adjacent to the few genes homologous to the Bithorax locus. Because the sex chromosome of an androdioecious species is of special interest, we used existing allozyme and microsatellite markers to identify the E. texana sex chromosome, and find that it comprises nearly half of the genome of this species. Linkage patterns indicate that recombination is extremely rare and perhaps absent in hermaphrodites, and as a result the location of the sex determining locus will be difficult to refine using recombination mapping.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


September 22, 2019  |  

Packaging of Dinoroseobacter shibae DNA into gene transfer agent particles is not random.

Gene transfer agents (GTAs) are phage-like particles which contain a fragment of genomic DNA of the bacterial or archaeal producer and deliver this to a recipient cell. GTA gene clusters are present in the genomes of almost all marine Rhodobacteraceae (Roseobacters) and might be important contributors to horizontal gene transfer in the world’s oceans. For all organisms studied so far, no obvious evidence of sequence specificity or other nonrandom process responsible for packaging genomic DNA into GTAs has been found. Here, we show that knock-out of an autoinducer synthase gene of Dinoroseobacter shibae resulted in overproduction and release of functional GTA particles (DsGTA). Next-generation sequencing of the 4.2-kb DNA fragments isolated from DsGTAs revealed that packaging was not random. DNA from low-GC conjugative plasmids but not from high-GC chromids was excluded from packaging. Seven chromosomal regions were strongly overrepresented in DNA isolated from DsGTA. These packaging peaks lacked identifiable conserved sequence motifs that might represent recognition sites for the GTA terminase complex. Low-GC regions of the chromosome, including the origin and terminus of replication, were underrepresented in DNA isolated from DsGTAs. DNA methylation reduced packaging frequency while the level of gene expression had no influence. Chromosomal regions found to be over- and underrepresented in DsGTA-DNA were regularly spaced. We propose that a “headful” type of packaging is initiated at the sites of coverage peaks and, after linearization of the chromosomal DNA, proceeds in both directions from the initiation site. GC-content, DNA-modifications, and chromatin structure might influence at which sides GTA packaging can be initiated.© The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.