fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Comparative genomics and physiology of the butyrate-producing bacterium Intestinimonas butyriciproducens.

Intestinimonas is a newly described bacterial genus with representative strains present in the intestinal tract of human and other animals. Despite unique metabolic features including the production of butyrate from both sugars and amino acids, there is to date no data on their diversity, ecology, and physiology. Using a comprehensive phylogenetic approach, Intestinimomas was found to include at least three species that colonize primarily the human and mouse intestine. We focused on the most common and cultivable species of the genus, Intestinimonas butyriciproducens, and performed detailed genomic and physiological comparison of strains SRB521(T) and AF211, isolated from the mouse and…

Read More »

Sunday, July 7, 2019

Full-length nucleotide sequences of mcr-1-harboring plasmids isolated from extended- spectrum-ß-lactamase-producing Escherichia coli isolates of different origins.

Here, we present the full sequences of three mcr-1-carrying plasmids isolated from extended-spectrum-ß-lactamase (ESBL)-producing Escherichia coli The plasmids belong to three different replicon types and are 34,640 bp, 209,401 bp, and 247,885 bp in size. We describe for the first time a composite transposon containing mcr-1 localized on a multidrug-resistant (MDR) IncHI2 plasmid harboring additional determinants of resistance to six different classes of antibiotics, including the ESBL gene blaCTX-M-1, and heavy metal resistance. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

Read More »

Sunday, July 7, 2019

Genome and plasmid analysis of blaIMP-4 -carrying Citrobacter freundii B38.

Sequencing of the blaIMP-4 -carrying C. freundii B38 using PacBio SMRT technique revealed that the genome contained a chromosome of 5,134,500 bp, and three plasmids, pOZ172 (127,005 bp), pOZ181 (277,592 bp), and pOZ182 (18,467 bp). Plasmid pOZ172 was identified as IncFIIY, like pP10164-NDM and pNDM-EcGN174. It carries a class 1 integron with four cassettes: blaIMP-4-qacG2-aacA4-aphA15, and a complete hybrid tni module (tniR-tniQ-tniB-tniA). The recombination of tniR from Tn402 (identical) with tniQBA (99%) from Tn5053 occurred within the res site of Tn402/5053. The Tn402/5053-like integron, named Tn6017, was inserted into Tn1722 at the res II site. The replication, partitioning and transfer…

Read More »

Sunday, July 7, 2019

Diversity of the tetracycline mobilome within a Chinese pig manure sample.

Tetracycline antibiotics are widely used in livestock, and tetracycline resistance genes (TRG) are frequently reported in the manure of farmed animals. However, the diversity of TRG-carrying transposons in manure has still been rarely investigated. Using a culture-free functional metagenomic procedure, combined with large-insert library construction and sequencing, bioinformatic analyses, and functional experiments, we identified 17 distinct TRGs in a single pig manure sample, including two new tet genes: tet(59), encoding a tetracycline efflux pump, and tet(W/N/W), encoding mosaic ribosomal protection. Our study also revealed six new TRG-carrying putative nonconjugative transposons: Tn5706-like transposon Tn6298, IS200/605-related transposon Tn6303, Tn3 family transposon Tn6299,…

Read More »

Sunday, July 7, 2019

Dissection of exopolysaccharide biosynthesis in Kozakia baliensis.

Acetic acid bacteria (AAB) are well known producers of commercially used exopolysaccharides, such as cellulose and levan. Kozakia (K.) baliensis is a relatively new member of AAB, which produces ultra-high molecular weight levan from sucrose. Throughout cultivation of two K. baliensis strains (DSM 14400, NBRC 16680) on sucrose-deficient media, we found that both strains still produce high amounts of mucous, water-soluble substances from mannitol and glycerol as (main) carbon sources. This indicated that both Kozakia strains additionally produce new classes of so far not characterized EPS.By whole genome sequencing of both strains, circularized genomes could be established and typical EPS…

Read More »

Sunday, July 7, 2019

Assembly and transfer of tripartite integrative and conjugative genetic elements.

Integrative and conjugative elements (ICEs) are ubiquitous mobile genetic elements present as “genomic islands” within bacterial chromosomes. Symbiosis islands are ICEs that convert nonsymbiotic mesorhizobia into symbionts of legumes. Here we report the discovery of symbiosis ICEs that exist as three separate chromosomal regions when integrated in their hosts, but through recombination assemble as a single circular ICE for conjugative transfer. Whole-genome comparisons revealed exconjugants derived from nonsymbiotic mesorhizobia received three separate chromosomal regions from the donor Mesorhizobium ciceri WSM1271. The three regions were each bordered by two nonhomologous integrase attachment (att) sites, which together comprised three homologous pairs of…

Read More »

Sunday, July 7, 2019

Characterization and comparative overview of complete sequences of the first plasmids of Pandoraea across clinical and non-clinical strains.

To date, information on plasmid analysis in Pandoraea spp. is scarce. To address the gap of knowledge on this, the complete sequences of eight plasmids from Pandoraea spp. namely Pandoraea faecigallinarum DSM 23572(T) (pPF72-1, pPF72-2), Pandoraea oxalativorans DSM 23570(T) (pPO70-1, pPO70-2, pPO70-3, pPO70-4), Pandoraea vervacti NS15 (pPV15) and Pandoraea apista DSM 16535(T) (pPA35) were studied for the first time in this study. The information on plasmid sequences in Pandoraea spp. is useful as the sequences did not match any known plasmid sequence deposited in public databases. Replication genes were not identified in some plasmids, a situation that has led to…

Read More »

Sunday, July 7, 2019

Use of single molecule sequencing for comparative genomics of an environmental and a clinical isolate of Clostridium difficile ribotype 078.

How the pathogen Clostridium difficile might survive, evolve and be transferred between reservoirs within the natural environment is poorly understood. Some ribotypes are found both in clinical and environmental settings. Whether these strains are distinct from each another and evolve in the specific environments is not established. The possession of a highly mobile genome has contributed to the genetic diversity and ongoing evolution of C. difficile. Interpretations of genetic diversity have been limited by fragmented assemblies resulting from short-read length sequencing approaches and by a limited understanding of epigenetic regulation of diversity. To address this, single molecule real time (SMRT) sequencing…

Read More »

Sunday, July 7, 2019

Characterization of tet(Y)-carrying LowGC plasmids exogenously captured from cow manure at a conventional dairy farm.

Manure from dairy farms has been shown to contain diverse tetracycline resistance genes that are transferable to soil. Here, we focus on conjugative plasmids that may spread tetracycline resistance at a conventional dairy farm. We performed exogenous plasmid isolation from cattle feces using chlortetracycline for transconjugant selection. The transconjugants obtained harbored LowGC-type plasmids and tet(Y). A representative plasmid (pFK2-7) was fully sequenced and this was compared with previously described LowGC plasmids from piggery manure-treated soil and a GenBank record from Acinetobacter nosocomialis that we also identified as a LowGC plasmid. The pFK2-7 plasmid had the conservative backbone typical of LowGC…

Read More »

Sunday, July 7, 2019

Genomic insights into a sustained national outbreak of Yersinia pseudotuberculosis.

In 2014, a sustained outbreak of yersiniosis due to Yersinia pseudotuberculosis occurred across all major cities in New Zealand (NZ), with a total of 220 laboratory-confirmed cases, representing one of the largest ever reported outbreaks of Y. pseudotuberculosis. Here, we performed whole genome sequencing of outbreak-associated isolates to produce the largest population analysis to date of Y. pseudotuberculosis, giving us unprecedented capacity to understand the emergence and evolution of the outbreak clone. Multivariate analysis incorporating our genomic and clinical epidemiological data strongly suggested a single point-source contamination of the food chain, with subsequent nationwide distribution of contaminated produce. We additionally…

Read More »

Sunday, July 7, 2019

svclassify: a method to establish benchmark structural variant calls.

The human genome contains variants ranging in size from small single nucleotide polymorphisms (SNPs) to large structural variants (SVs). High-quality benchmark small variant calls for the pilot National Institute of Standards and Technology (NIST) Reference Material (NA12878) have been developed by the Genome in a Bottle Consortium, but no similar high-quality benchmark SV calls exist for this genome. Since SV callers output highly discordant results, we developed methods to combine multiple forms of evidence from multiple sequencing technologies to classify candidate SVs into likely true or false positives. Our method (svclassify) calculates annotations from one or more aligned bam files…

Read More »

Sunday, July 7, 2019

A high throughput screen for active human transposable elements.

Transposable elements (TEs) are mobile genetic sequences that randomly propagate within their host’s genome. This mobility has the potential to affect gene transcription and cause disease. However, TEs are technically challenging to identify, which complicates efforts to assess the impact of TE insertions on disease. Here we present a targeted sequencing protocol and computational pipeline to identify polymorphic and novel TE insertions using next-generation sequencing: TE-NGS. The method simultaneously targets the three subfamilies that are responsible for the majority of recent TE activity (L1HS, AluYa5/8, and AluYb8/9) thereby obviating the need for multiple experiments and reducing the amount of input…

Read More »

Sunday, July 7, 2019

Tigmint: correcting assembly errors using linked reads from large molecules.

Genome sequencing yields the sequence of many short snippets of DNA (reads) from a genome. Genome assembly attempts to reconstruct the original genome from which these reads were derived. This task is difficult due to gaps and errors in the sequencing data, repetitive sequence in the underlying genome, and heterozygosity. As a result, assembly errors are common. In the absence of a reference genome, these misassemblies may be identified by comparing the sequencing data to the assembly and looking for discrepancies between the two. Once identified, these misassemblies may be corrected, improving the quality of the assembled sequence. Although tools…

Read More »

Sunday, July 7, 2019

The case for not masking away repetitive DNA

In the course of analyzing whole-genome data, it is common practice to mask or filter out repetitive regions of a genome, such as transposable elements and endogenous retroviruses, in order to focus only on genes and thus simplify the results. This Commentary is a plea from one member of the Mobile DNA community to all gene-centric researchers: please do not ignore the repetitive fraction of the genome. Please stop narrowing your findings by only analyzing a minority of the genome, and instead broaden your analyses to include the rich biology of repetitive and mobile DNA. In this article, I present…

Read More »

Sunday, July 7, 2019

First description of novel arginine catabolic mobile elements (ACMEs) types IV and V harboring a kdp operon in Staphylococcus epidermidis characterized by whole genome sequencing.

The arginine catabolic mobile element (ACME) was first described in the methicillin-resistant Staphylococcus aureus strain USA300 and is thought to facilitate survival on skin. To date three distinct ACME types have been characterized comprehensively in S. aureus and/or Staphylococcus epidermidis. Type I harbors the arc and opp3 operons encoding an arginine deaminase pathway and an oligopeptide permease ABC transporter, respectively, type II harbors the arc operon only, and type III harbors the opp3 operon only. To investigate the diversity and detailed genetic organization of ACME, whole genome sequencing (WGS) was performed on 32 ACME-harboring oro-nasal S. epidermidis isolates using MiSeq-…

Read More »

1 18 19 20 21

Subscribe for blog updates:

Archives

Stay
Current

Visit our blog »