Menu
April 21, 2020  |  

Diverse Vectors and Mechanisms Spread New Delhi Metallo-ß-Lactamases among Carbapenem-Resistant Enterobacteriaceae in the Greater Boston Area.

New Delhi metallo-beta-lactamases (NDMs) are an uncommon but emerging cause of carbapenem resistance in the United States. Genomic factors promoting their domestic spread remain poorly characterized. A prospective genomic surveillance program among Boston-area hospitals identified multiple new occurrences of NDM-carrying strains of Escherichia coli and Enterobacter cloacae complex in inpatient and outpatient settings, representing the first occurrences of NDM-mediated resistance since initiating genomic surveillance in 2011. Cases included domestic patients with no international exposures. PacBio sequencing of isolates identified strain characteristics, resistance genes, and the complement of mobile vectors mediating spread. Analyses revealed a common 3,114-bp region containing the blaNDM gene, with carriage of this conserved region among unique strains by diverse transposon and plasmid backbones. Functional studies revealed a broad capacity for blaNDM transmission by conjugation, transposition, and complex interplasmid recombination events. NDMs represent a rapidly spreading form of drug resistance that can occur in inpatient and outpatient settings and in patients without international exposures. In contrast to Tn4401-based spread of Klebsiella pneumoniae carbapenemases (KPCs), diverse transposable elements mobilize NDM enzymes, commonly with other resistance genes, enabling naive strains to acquire multi- and extensively drug-resistant profiles with single transposition or plasmid conjugation events. Genomic surveillance provides effective means to rapidly identify these gene-level drivers of resistance and mobilization in order to inform clinical decisions to prevent further spread.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Into the Thermus Mobilome: Presence, Diversity and Recent Activities of Insertion Sequences Across Thermus spp.

A high level of transposon-mediated genome rearrangement is a common trait among microorganisms isolated from thermal environments, probably contributing to the extraordinary genomic plasticity and horizontal gene transfer (HGT) observed in these habitats. In this work, active and inactive insertion sequences (ISs) spanning the sequenced members of the genus Thermus were characterized, with special emphasis on three T. thermophilus strains: HB27, HB8, and NAR1. A large number of full ISs and fragments derived from different IS families were found, concentrating within megaplasmids present in most isolates. Potentially active ISs were identified through analysis of transposase integrity, and domestication-related transposition events of ISTth7 were identified in laboratory-adapted HB27 derivatives. Many partial copies of ISs appeared throughout the genome, which may serve as specific targets for homologous recombination contributing to genome rearrangement. Moreover, recruitment of IS1000 32 bp segments as spacers for CRISPR sequence was identified, pointing to the adaptability of these elements in the biology of these thermophiles. Further knowledge about the activity and functional diversity of ISs in this genus may contribute to the generation of engineered transposons as new genetic tools, and enrich our understanding of the outstanding plasticity shown by these thermophiles.


April 21, 2020  |  

Complete Sequence of a Novel Multidrug-Resistant Pseudomonas putida Strain Carrying Two Copies of qnrVC6.

This study aimed at identification and characterization of a novel multidrug-resistant Pseudomonas putida strain Guangzhou-Ppu420 carrying two copies of qnrVC6 isolated from a hospital in Guangzhou, China, in 2012. Antimicrobial susceptibility was tested by Vitek2™ Automated Susceptibility System and Etest™ strips, and whole-genome sequencing facilitated analysis of its multidrug resistance. The genome has a length of 6,031,212?bp and an average G?+?C content of 62.01%. A total of 5,421 open reading frames were identified, including eight 5S rRNA, seven 16S rRNA, and seven 23S rRNA, and 76 tRNA genes. Importantly, two copies of qnrVC6 gene with three ISCR1 around, a blaVIM-2 carrying integron In528, a novel gcu173 carrying integron In1348, and six antibiotic resistance genes were identified. This is the first identification of two copies of the qnrVC6 gene in a single P. putida isolate and a class 1 integron In1348.


April 21, 2020  |  

Aquella oligotrophica gen. nov. sp. nov.: A new member of the family Neisseriaceae isolated from laboratory tap water.

A bacterial strain designated as P08T was isolated from laboratory tap water during a water quality assessment in University of Malaya, Malaysia. The strain was a Gram-negative, rod-shaped, nonmotile, and aerobic bacterium. Complete genome of P08T comprised of a 2,820,660 bp chromosome with a G + C content of 36.43%. Both 16S rRNA phylogeny and phylogenetic tree inferred from the core gene matrix demonstrated that P08T formed a hitherto unknown subline within the family Neisseriaceae. Ortho average nucleotide identity (OrthoANI) values and the percentage of conserved proteins (POCP) calculated from complete genome sequence indicated low relatedness between P08T and its phylogenetic neighbors. Respiratory quinone analysis revealed Q-8 as the only detectable quinone. The predominant cellular fatty acids were identified as C14:0 , iso-C15:0 , and summed feature 3 (C16:1 ?7c/C16:1 ?6c). The polar lipids consisted of uncharacterized aminolipid, phosphatidylglycerol, and phosphatidylethanolamine. All aspects of phenotypic and phylogenetic data suggested that strain P08T represents a novel genus within family Neisseriaceae, for which the name Aquella gen. nov. is proposed. The type species of the genus is Aquella oligotrophica sp. nov., and the type strain is P08T (=LMG 29629T =DSM 100970T ). © 2019 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


April 21, 2020  |  

Chromulinavorax destructans, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum Dependentiae.

Members of the major candidate phylum Dependentiae (a.k.a. TM6) are widespread across diverse environments from showerheads to peat bogs; yet, with the exception of two isolates infecting amoebae, they are only known from metagenomic data. The limited knowledge of their biology indicates that they have a long evolutionary history of parasitism. Here, we present Chromulinavorax destructans (Strain SeV1) the first isolate of this phylum to infect a representative from a widespread and ecologically significant group of heterotrophic flagellates, the microzooplankter Spumella elongata (Strain CCAP 955/1). Chromulinavorax destructans has a reduced 1.2 Mb genome that is so specialized for infection that it shows no evidence of complete metabolic pathways, but encodes an extensive transporter system for importing nutrients and energy in the form of ATP from the host. Its replication causes extensive reorganization and expansion of the mitochondrion, effectively surrounding the pathogen, consistent with its dependency on the host for energy. Nearly half (44%) of the inferred proteins contain signal sequences for secretion, including many without recognizable similarity to proteins of known function, as well as 98 copies of proteins with an ankyrin-repeat domain; ankyrin-repeats are known effectors of host modulation, suggesting the presence of an extensive host-manipulation apparatus. These observations help to cement members of this phylum as widespread and diverse parasites infecting a broad range of eukaryotic microbes.


April 21, 2020  |  

Genomic characterization of Kerstersia gyiorum SWMUKG01, an isolate from a patient with respiratory infection in China.

The Gram-negative bacterium Kerstersia gyiorum, a potential etiological agent of clinical infections, was isolated from several human patients presenting clinical symptoms. Its significance as a possible pathogen has been previously overlooked as no disease has thus far been definitively associated with this bacterium. To better understand how the organism contributes to the infectious disease, we determined the complete genomic sequence of K. gyiorum SWMUKG01, the first clinical isolate from southwest China.The genomic data obtained displayed a single circular chromosome of 3, 945, 801 base pairs in length, which contains 3, 441 protein-coding genes, 55 tRNA genes and 9 rRNA genes. Analysis on the full spectrum of protein coding genes for cellular structures, two-component regulatory systems and iron uptake pathways that may be important for the success of the bacterial survival, colonization and establishment in the host conferred new insights into the virulence characteristics of K. gyiorum. Phylogenomic comparisons with Alcaligenaceae species indicated that K. gyiorum SWMUKG01 had a close evolutionary relationships with Alcaligenes aquatilis and Alcaligenes faecalis.The comprehensive analysis presented in this work determinates for the first time a complete genome sequence of K. gyiorum, which is expected to provide useful information for subsequent studies on pathogenesis of this species.


April 21, 2020  |  

Complete Genome Sequence of “Candidatus Thioglobus sp.” Strain NP1, an Open-Ocean Isolate from the SUP05 Clade of Marine Gammaproteobacteria

Candidatus Thioglobus sp.textquotedblright strain NP1 is an open-ocean isolate from the SUP05 clade of Gammaproteobacteria. Whole-genome comparisons of strain NP1 to other sequenced isolates from the SUP05 clade indicate that it represents a new species of SUP05 that lacks the ability to fix inorganic carbon using the Calvin-Benson-Bassham cycle.


April 21, 2020  |  

Comprehensive evaluation of non-hybrid genome assembly tools for third-generation PacBio long-read sequence data.

Long reads obtained from third-generation sequencing platforms can help overcome the long-standing challenge of the de novo assembly of sequences for the genomic analysis of non-model eukaryotic organisms. Numerous long-read-aided de novo assemblies have been published recently, which exhibited superior quality of the assembled genomes in comparison with those achieved using earlier second-generation sequencing technologies. Evaluating assemblies is important in guiding the appropriate choice for specific research needs. In this study, we evaluated 10 long-read assemblers using a variety of metrics on Pacific Biosciences (PacBio) data sets from different taxonomic categories with considerable differences in genome size. The results allowed us to narrow down the list to a few assemblers that can be effectively applied to eukaryotic assembly projects. Moreover, we highlight how best to use limited genomic resources for effectively evaluating the genome assemblies of non-model organisms. © The Author 2017. Published by Oxford University Press.


April 21, 2020  |  

Complete Genome Sequence of the Wolbachia wAlbB Endosymbiont of Aedes albopictus.

Wolbachia, an alpha-proteobacterium closely related to Rickettsia, is a maternally transmitted, intracellular symbiont of arthropods and nematodes. Aedes albopictus mosquitoes are naturally infected with Wolbachia strains wAlbA and wAlbB. Cell line Aa23 established from Ae. albopictus embryos retains only wAlbB and is a key model to study host-endosymbiont interactions. We have assembled the complete circular genome of wAlbB from the Aa23 cell line using long-read PacBio sequencing at 500× median coverage. The assembled circular chromosome is 1.48 megabases in size, an increase of more than 300 kb over the published draft wAlbB genome. The annotation of the genome identified 1,205 protein coding genes, 34 tRNA, 3 rRNA, 1 tmRNA, and 3 other ncRNA loci. The long reads enabled sequencing over complex repeat regions which are difficult to resolve with short-read sequencing. Thirteen percent of the genome comprised insertion sequence elements distributed throughout the genome, some of which cause pseudogenization. Prophage WO genes encoding some essential components of phage particle assembly are missing, while the remainder are found in five prophage regions/WO-like islands or scattered around the genome. Orthology analysis identified a core proteome of 535 orthogroups across all completed Wolbachia genomes. The majority of proteins could be annotated using Pfam and eggNOG analyses, including ankyrins and components of the Type IV secretion system. KEGG analysis revealed the absence of five genes in wAlbB which are present in other Wolbachia. The availability of a complete circular chromosome from wAlbB will enable further biochemical, molecular, and genetic analyses on this strain and related Wolbachia. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


April 21, 2020  |  

Tools and Strategies for Long-Read Sequencing and De Novo Assembly of Plant Genomes.

The commercial release of third-generation sequencing technologies (TGSTs), giving long and ultra-long sequencing reads, has stimulated the development of new tools for assembling highly contiguous genome sequences with unprecedented accuracy across complex repeat regions. We survey here a wide range of emerging sequencing platforms and analytical tools for de novo assembly, provide background information for each of their steps, and discuss the spectrum of available options. Our decision tree recommends workflows for the generation of a high-quality genome assembly when used in combination with the specific needs and resources of a project.Copyright © 2019 Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Characterizing the major structural variant alleles of the human genome.

In order to provide a comprehensive resource for human structural variants (SVs), we generated long-read sequence data and analyzed SVs for fifteen human genomes. We sequence resolved 99,604 insertions, deletions, and inversions including 2,238 (1.6 Mbp) that are shared among all discovery genomes with an additional 13,053 (6.9 Mbp) present in the majority, indicating minor alleles or errors in the reference. Genotyping in 440 additional genomes confirms the most common SVs in unique euchromatin are now sequence resolved. We report a ninefold SV bias toward the last 5 Mbp of human chromosomes with nearly 55% of all VNTRs (variable number of tandem repeats) mapping to this portion of the genome. We identify SVs affecting coding and noncoding regulatory loci improving annotation and interpretation of functional variation. These data provide the framework to construct a canonical human reference and a resource for developing advanced representations capable of capturing allelic diversity. Copyright © 2018 Elsevier Inc. All rights reserved.


April 21, 2020  |  

Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution.

We present reference-quality genome assembly and annotation for the stout camphor tree (Cinnamomum kanehirae (Laurales, Lauraceae)), the first sequenced member of the Magnoliidae comprising four orders (Laurales, Magnoliales, Canellales and Piperales) and over 9,000 species. Phylogenomic analysis of 13 representative seed plant genomes indicates that magnoliid and eudicot lineages share more recent common ancestry than monocots. Two whole-genome duplication events were inferred within the magnoliid lineage: one before divergence of Laurales and Magnoliales and the other within the Lauraceae. Small-scale segmental duplications and tandem duplications also contributed to innovation in the evolutionary history of Cinnamomum. For example, expansion of the terpenoid synthase gene subfamilies within the Laurales spawned the diversity of Cinnamomum monoterpenes and sesquiterpenes.


April 21, 2020  |  

Finding Nemo’s Genes: A chromosome-scale reference assembly of the genome of the orange clownfish Amphiprion percula.

The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that antipredator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here, we present a de novo chromosome-scale assembly of the genome of the orange clownfish Amphiprion percula. We utilized single-molecule real-time sequencing technology from Pacific Biosciences to produce an initial polished assembly comprised of 1,414 contigs, with a contig N50 length of 1.86 Mb. Using Hi-C-based chromatin contact maps, 98% of the genome assembly were placed into 24 chromosomes, resulting in a final assembly of 908.8 Mb in length with contig and scaffold N50s of 3.12 and 38.4 Mb, respectively. This makes it one of the most contiguous and complete fish genome assemblies currently available. The genome was annotated with 26,597 protein-coding genes and contains 96% of the core set of conserved actinopterygian orthologs. The availability of this reference genome assembly as a community resource will further strengthen the role of the orange clownfish as a model species for research on the ecology and evolution of reef fishes. © 2018 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.


April 21, 2020  |  

Mitochondrial genome characterization of Melipona bicolor: Insights from the control region and gene expression data.

The stingless bee Melipona bicolor is the only bee in which true polygyny occurs. Its mitochondrial genome was first sequenced in 2008, but it was incomplete and no information about its transcription was known. We combined short and long reads of M. bicolor DNA with RNASeq data to obtain insights about mitochondrial evolution and gene expression in bees. The complete genome has 15,001?bp, including a control region of 255?bp that contains all conserved structures described in honeybees with the highest AT content reported so far for bees (98.1%), displaying a compact but functional region. Gene expression control is similar to other insects however unusual patterns of expression may suggest the existence of different isoforms for the mitochondrially encoded 12S rRNA. Results reveal unique and shared features of the mitochondrial genome in terms of sequence evolution and gene expression making M. bicolor an interesting model to study mitochondrial genomic evolution. Copyright © 2019 Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.