X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, October 25, 2020

ASM PacBio Workshop: Phasevarion – switching expression of multiple genes by methyltransferases in host-adapted pathogens

Epigenetics expert Michael Jennings from Griffith University first posited the phasevarion, or the phase variable regulon mechanism in host-adapted pathogens. This mechanism switches expression of multiple genes in a coordinated fashion and has significant implications on pathogen virulence. In his talk, Jennings describes the phasevarion and his use of whole methylome data to rapidly identify methylation targets.

Read More »

Sunday, October 25, 2020

ASM PacBio Workshop: Comprehensive methylome analysis of the human gastric pathogen, Helicobacter pylori

Sebastian Suerbaum from Hannover Medical School shows that genome-wide methylation patterns in Helicobacter pylori are highly complex and diverge significantly between strains of the microbe. He presents a full-methylome analysis of two H. pylori strains, finding 32 total methylated motifs with just seven shared between strains. Of the 32 motifs, 11 were new discoveries.

Read More »

Sunday, October 25, 2020

AGBT Conference: Functional genomics – gene annotation and methylome analysis in bacteria

In his AGBT talk, Matthew Blow from the Joint Genome Institute describes high-throughput pipelines to annotate gene function and explore methylation in microbes. He uses transposon sequencing to annotate thousands of genes in bacteria and archaea. Later, he presents a study using SMRT Sequencing to generate complete methylomes for 232 prokaryotes, showing that orphan methylases appear to have a regulatory role.

Read More »

Sunday, October 25, 2020

i5K Webinar: High-quality de novo insect genome assemblies using PacBio sequencing

PacBio Sequencing is characterized by very long sequence reads (averaging > 10,000 bases), lack of GC-bias, and high consensus accuracy. These features have allowed the method to provide a new gold standard in de novo genome assemblies, producing highly contiguous (contig N50 > 1 Mb) and accurate (> QV 50) genome assemblies. We will briefly describe the technology and then highlight the full workflow, from sample preparation through sequencing to data analysis, on examples of insect genome assemblies, and illustrate the difference these high-quality genomes represent with regard to biological insights, compared to fragmented draft assemblies generated by short-read sequencing.

Read More »

Sunday, October 25, 2020

Video: Using the Integrative Genomics Viewer (IGV) to visualize PacBio long-read SMRT Sequencing data

In this video, PacBio scientists present ongoing improvements to the Integrative Genomics Viewer (IGV) and demonstrate how multiple new features improve visualization support for PacBio long-read sequencing data. The video describes these recent updates which include; quick consensus accuracy mode to hide random single-molecule errors, direct phasing of haplotypes using long-read evidence, and visual annotation of insertions and deletions relative to the reference with enumeration of gap size for individual reads. These new features are available now in the development version of IGV, which can be found at http://software.broadinstitute.org/software/igv/download_snapshot. The Sequel sequencing data used in this demonstration is also publicly…

Read More »

Tuesday, April 21, 2020

Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction-modification systems.

A major barrier to both metabolic engineering and fundamental biological studies is the lack of genetic tools in most microorganisms. One example is Clostridium thermocellum ATCC 27405T, where genetic tools are not available to help validate decades of hypotheses. A significant barrier to DNA transformation is restriction-modification systems, which defend against foreign DNA methylated differently than the host. To determine the active restriction-modification systems in this strain, we performed complete methylome analysis via single-molecule, real-time sequencing to detect 6-methyladenine and 4-methylcytosine and the rarely used whole-genome bisulfite sequencing to detect 5-methylcytosine. Multiple active systems were identified, and corresponding DNA methyltransferases…

Read More »

Tuesday, April 21, 2020

Genome sequence analysis of 91 Salmonella Enteritidis isolates from mice caught on poultry farms in the mid 1990s.

A total of 91 draft genome sequences were used to analyze isolates of Salmonella enterica serovar Enteritidis obtained from feral mice caught on poultry farms in Pennsylvania. One objective was to find mutations disrupting open reading frames (ORFs) and another was to determine if ORF-disruptive mutations were present in isolates obtained from other sources. A total of 83 mice were obtained between 1995-1998. Isolates separated into two genomic clades and 12 subgroups due to 742 mutations. Nineteen ORF-disruptive mutations were found, and in addition, bigA had exceptional heterogeneity requiring additional evaluation. The TRAMS algorithm detected only 6 ORF disruptions. The…

Read More »

Tuesday, April 21, 2020

A Novel Bacteriophage Exclusion (BREX) System Encoded by the pglX Gene in Lactobacillus casei Zhang.

The bacteriophage exclusion (BREX) system is a novel prokaryotic defense system against bacteriophages. To our knowledge, no study has systematically characterized the function of the BREX system in lactic acid bacteria. Lactobacillus casei Zhang is a probiotic bacterium originating from koumiss. By using single-molecule real-time sequencing, we previously identified N6-methyladenine (m6A) signatures in the genome of L. casei Zhang and a putative methyltransferase (MTase), namely, pglX This work further analyzed the genomic locus near the pglX gene and identified it as a component of the BREX system. To decipher the biological role of pglX, an L. casei Zhang pglX mutant…

Read More »

1 2 3 22

Subscribe for blog updates:

Archives