April 21, 2020  |  

Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution.

We present reference-quality genome assembly and annotation for the stout camphor tree (Cinnamomum kanehirae (Laurales, Lauraceae)), the first sequenced member of the Magnoliidae comprising four orders (Laurales, Magnoliales, Canellales and Piperales) and over 9,000 species. Phylogenomic analysis of 13 representative seed plant genomes indicates that magnoliid and eudicot lineages share more recent common ancestry than monocots. Two whole-genome duplication events were inferred within the magnoliid lineage: one before divergence of Laurales and Magnoliales and the other within the Lauraceae. Small-scale segmental duplications and tandem duplications also contributed to innovation in the evolutionary history of Cinnamomum. For example, expansion of the terpenoid synthase gene subfamilies within the Laurales spawned the diversity of Cinnamomum monoterpenes and sesquiterpenes.


April 21, 2020  |  

Analysis of transcripts and splice isoforms in Medicago sativa L. by single-molecule long-read sequencing.

The full-length transcriptome of alfalfa was analyzed with PacBio single-molecule long-read sequencing technology. The transcriptome data provided full-length sequences and gene isoforms of transcripts in alfalfa, which will improve genome annotation and enhance our understanding of the gene structure of alfalfa. As an important forage, alfalfa (Medicago sativa L.) is world-wide planted. For its complexity of genome and unfinished whole genome sequencing, the sequences and complete structure of mRNA transcripts remain unclear in alfalfa. In this study, single-molecule long-read sequencing was applied to investigate the alfalfa transcriptome using the Pacific Biosciences platform, and a total of 113,321 transcripts were obtained from young, mature and senescent leaves. We identified 72,606 open reading frames including 46,616 full-length ORFs, 1670 transcription factors from 54 TF families and 44,040 simple sequence repeats from 30,797 sequences. A total of 7568 alternative splicing events was identified and the majority of alternative splicing events in alfalfa was intron retention. In addition, we identified 17,740 long non-coding RNAs. Our results show the feasibility of deep sequencing full-length RNA from alfalfa transcriptome on a single-molecule level.


April 21, 2020  |  

Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.).

Alfalfa is the most extensively cultivated forage legume. Salinity is a major environmental factor that impacts on alfalfa’s productivity. However, little is known about the molecular mechanisms underlying alfalfa responses to salinity, especially the relative contribution of the two important components of osmotic and ionic stress.In this study, we constructed the first full-length transcriptome database for alfalfa root tips under continuous NaCl and mannitol treatments for 1, 3, 6, 12, and 24?h (three biological replicates for each time points, including the control group) via PacBio Iso-Seq. This resulted in the identification of 52,787 full-length transcripts, with an average length of 2551?bp. Global transcriptional changes in the same 33 stressed samples were then analyzed via BGISEQ-500 RNA-Seq. Totals of 8861 NaCl-regulated and 8016 mannitol-regulated differentially expressed genes (DEGs) were identified. Metabolic analyses revealed that these DEGs overlapped or diverged in the cascades of molecular networks involved in signal perception, signal transduction, transcriptional regulation, and antioxidative defense. Notably, several well characterized signalling pathways, such as CDPK, MAPK, CIPK, and PYL-PP2C-SnRK2, were shown to be involved in osmotic stress, while the SOS core pathway was activated by ionic stress. Moreover, the physiological shifts of catalase and peroxidase activity, glutathione and proline content were in accordance with dynamic transcript profiles of the relevant genes, indicating that antioxidative defense system plays critical roles in response to salinity stress.Overall, our study provides evidence that the response to salinity stress in alfalfa includes both osmotic and ionic components. The key osmotic and ionic stress-related genes are candidates for future studies as potential targets to improve resistance to salinity stress via genetic engineering.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.