September 22, 2019  |  

High-resolution comparative analysis of great ape genomes.

Genetic studies of human evolution require high-quality contiguous ape genome assemblies that are not guided by the human reference. We coupled long-read sequence assembly and full-length complementary DNA sequencing with a multiplatform scaffolding approach to produce ab initio chimpanzee and orangutan genome assemblies. By comparing these with two long-read de novo human genome assemblies and a gorilla genome assembly, we characterized lineage-specific and shared great ape genetic variation ranging from single- to mega-base pair-sized variants. We identified ~17,000 fixed human-specific structural variants identifying genic and putative regulatory changes that have emerged in humans since divergence from nonhuman apes. Interestingly, these variants are enriched near genes that are down-regulated in human compared to chimpanzee cerebral organoids, particularly in cells analogous to radial glial neural progenitors. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

September 22, 2019  |  

A genomic case study of mixed fibrolamellar hepatocellular carcinoma.

Mixed fibrolamellar hepatocellular carcinoma (mFL-HCC) is a rare liver tumor defined by the presence of both pure FL-HCC and conventional HCC components, represents up to 25% of cases of FL-HCC, and has been associated with worse prognosis. Recent genomic characterization of pure FL-HCC identified a highly recurrent transcript fusion (DNAJB1:PRKACA) not found in conventional HCC.We performed exome and transcriptome sequencing of a case of mFL-HCC. A novel BAC-capture approach was developed to identify a 400 kb deletion as the underlying genomic mechanism for a DNAJB1:PRKACA fusion in this case. A sensitive Nanostring Elements assay was used to screen for this transcript fusion in a second case of mFL-HCC, 112 additional HCC samples and 44 adjacent non-tumor liver samples.We report the first comprehensive genomic analysis of a case of mFL-HCC. No common HCC-associated mutations were identified. The very low mutation rate of this case, large number of mostly single-copy, long-range copy number variants, and high expression of ERBB2 were more consistent with previous reports of pure FL-HCC than conventional HCC. In particular, the DNAJB1:PRKACA fusion transcript specifically associated with pure FL-HCC was detected at very high expression levels. Subsequent analysis revealed the presence of this fusion in all primary and metastatic samples, including those with mixed or conventional HCC pathology. A second case of mFL-HCC confirmed our finding that the fusion was detectable in conventional components. An expanded screen identified a third case of fusion-positive HCC, which upon review, also had both conventional and fibrolamellar features. This screen confirmed the absence of the fusion in all conventional HCC and adjacent non-tumor liver samples.These results indicate that mFL-HCC is similar to pure FL-HCC at the genomic level and the DNAJB1:PRKACA fusion can be used as a diagnostic tool for both pure and mFL-HCC.© The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology.

September 22, 2019  |  

Improving eukaryotic genome annotation using single molecule mRNA sequencing.

The advantages of Pacific Biosciences (PacBio) single-molecule real-time (SMRT) technology include long reads, low systematic bias, and high consensus read accuracy. Here we use these attributes to improve on the genome annotation of the parasitic hookworm Ancylostoma ceylanicum using PacBio RNA-Seq.We sequenced 192,888 circular consensus sequences (CCS) derived from cDNAs generated using the CloneTech SMARTer system. These SMARTer-SMRT libraries were normalized and size-selected providing a robust population of expressed structural genes for subsequent genome annotation. We demonstrate PacBio mRNA sequences based genome annotation improvement, compared to genome annotation using conventional sequencing-by-synthesis alone, by identifying 1609 (9.2%) new genes, extended the length of 3965 (26.7%) genes and increased the total genomic exon length by 1.9 Mb (12.4%). Non-coding sequence representation (primarily from UTRs based on dT reverse transcription priming) was particularly improved, increasing in total length by fifteen-fold, by increasing both the length and number of UTR exons. In addition, the UTR data provided by these CCS allowed for the identification of a novel SL2 splice leader sequence for A. ceylanicum and an increase in the number and proportion of functionally annotated genes. RNA-seq data also confirmed some of the newly annotated genes and gene features.Overall, PacBio data has supported a significant improvement in gene annotation in this genome, and is an appealing alternative or complementary technique for genome annotation to the other transcript sequencing technologies.

September 22, 2019  |  

Identification of a novel fusion transcript between human relaxin-1 (RLN1) and human relaxin-2 (RLN2) in prostate cancer.

Simultaneous expression of highly homologous RLN1 and RLN2 genes in prostate impairs their accurate delineation. We used PacBio SMRT sequencing and RNA-Seq in LNCaP cells in order to dissect the expression of RLN1 and RLN2 variants. We identified a novel fusion transcript comprising the RLN1 and RLN2 genes and found evidence of its expression in the normal and prostate cancer tissues. The RLN1-RLN2 fusion putatively encodes RLN2 isoform with the deleted secretory signal peptide. The identification of the fusion transcript provided information to determine unique RLN1-RLN2 fusion and RLN1 regions. The RLN1-RLN2 fusion was co-expressed with RLN1 in LNCaP cells, but the two gene products were inversely regulated by androgens. We showed that RLN1 is underrepresented in common PCa cell lines in comparison to normal and PCa tissue. The current study brings a highly relevant update to the relaxin field, and will encourage further studies of RLN1 and RLN2 in PCa and broader. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

September 21, 2019  |  

Retrotransposons are the major contributors to the expansion of the Drosophila ananassae Muller F element.

The discordance between genome size and the complexity of eukaryotes can partly be attributed to differences in repeat density. The Muller F element (~5.2 Mb) is the smallest chromosome in Drosophila melanogaster, but it is substantially larger (>18.7 Mb) in D. ananassae To identify the major contributors to the expansion of the F element and to assess their impact, we improved the genome sequence and annotated the genes in a 1.4-Mb region of the D. ananassae F element, and a 1.7-Mb region from the D element for comparison. We find that transposons (particularly LTR and LINE retrotransposons) are major contributors to this expansion (78.6%), while Wolbachia sequences integrated into the D. ananassae genome are minor contributors (0.02%). Both D. melanogaster and D. ananassae F-element genes exhibit distinct characteristics compared to D-element genes (e.g., larger coding spans, larger introns, more coding exons, and lower codon bias), but these differences are exaggerated in D. ananassae Compared to D. melanogaster, the codon bias observed in D. ananassae F-element genes can primarily be attributed to mutational biases instead of selection. The 5′ ends of F-element genes in both species are enriched in dimethylation of lysine 4 on histone 3 (H3K4me2), while the coding spans are enriched in H3K9me2. Despite differences in repeat density and gene characteristics, D. ananassae F-element genes show a similar range of expression levels compared to genes in euchromatic domains. This study improves our understanding of how transposons can affect genome size and how genes can function within highly repetitive domains. Copyright © 2017 Leung et al.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.