Menu
September 22, 2019  |  

Sex chromosome evolution via two genes

The origin of sex chromosomes has been hypothesized to involve the linkage of factors with antagonistic effects on male and female function. Garden asparagus (Asparagus officinalis L.) is an ideal species to test this hypothesis, as the X and Y chromosomes are cytologically homomorphic and recently evolved from an ancestral autosome pair in association with a shift from hermaphroditism to dioecy. Mutagenesis screens paired with single-molecule fluorescence in situ hybridization (smFISH) directly implicate Y-specific genes that respectively suppress female organ development and are necessary for male gametophyte development. Comparison of contiguous X and Y chromosome shows that loss of recombination between the genes suppressing female function (SUPPRESSOR OF FEMALE FUNCTION, SOFF) and promoting male function (TAPETAL DEVELOPMENT AND FUNCTION 1, aspTDF1) is due to hemizygosity. We also experimentally demonstrate the function of aspTDF1. These finding provide direct evidence that sex chromosomes can evolve from autosomes via two sex determination genes: a dominant suppressor of femaleness and a promoter of maleness.


September 21, 2019  |  

Assessing genome assembly quality using the LTR Assembly Index (LAI).

Assembling a plant genome is challenging due to the abundance of repetitive sequences, yet no standard is available to evaluate the assembly of repeat space. LTR retrotransposons (LTR-RTs) are the predominant interspersed repeat that is poorly assembled in draft genomes. Here, we propose a reference-free genome metric called LTR Assembly Index (LAI) that evaluates assembly continuity using LTR-RTs. After correcting for LTR-RT amplification dynamics, we show that LAI is independent of genome size, genomic LTR-RT content, and gene space evaluation metrics (i.e., BUSCO and CEGMA). By comparing genomic sequences produced by various sequencing techniques, we reveal the significant gain of assembly continuity by using long-read-based techniques over short-read-based methods. Moreover, LAI can facilitate iterative assembly improvement with assembler selection and identify low-quality genomic regions. To apply LAI, intact LTR-RTs and total LTR-RTs should contribute at least 0.1% and 5% to the genome size, respectively. The LAI program is freely available on GitHub: https://github.com/oushujun/LTR_retriever.


September 21, 2019  |  

The advantages of SMRT sequencing.

Of the current next-generation sequencing technologies, SMRT sequencing is sometimes overlooked. However, attributes such as long reads, modified base detection and high accuracy make SMRT a useful technology and an ideal approach to the complete sequencing of small genomes.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.