Menu
April 21, 2020  |  

Complete Sequence of a Novel Multidrug-Resistant Pseudomonas putida Strain Carrying Two Copies of qnrVC6.

This study aimed at identification and characterization of a novel multidrug-resistant Pseudomonas putida strain Guangzhou-Ppu420 carrying two copies of qnrVC6 isolated from a hospital in Guangzhou, China, in 2012. Antimicrobial susceptibility was tested by Vitek2™ Automated Susceptibility System and Etest™ strips, and whole-genome sequencing facilitated analysis of its multidrug resistance. The genome has a length of 6,031,212?bp and an average G?+?C content of 62.01%. A total of 5,421 open reading frames were identified, including eight 5S rRNA, seven 16S rRNA, and seven 23S rRNA, and 76 tRNA genes. Importantly, two copies of qnrVC6 gene with three ISCR1 around, a blaVIM-2 carrying integron In528, a novel gcu173 carrying integron In1348, and six antibiotic resistance genes were identified. This is the first identification of two copies of the qnrVC6 gene in a single P. putida isolate and a class 1 integron In1348.


April 21, 2020  |  

Chromulinavorax destructans, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum Dependentiae.

Members of the major candidate phylum Dependentiae (a.k.a. TM6) are widespread across diverse environments from showerheads to peat bogs; yet, with the exception of two isolates infecting amoebae, they are only known from metagenomic data. The limited knowledge of their biology indicates that they have a long evolutionary history of parasitism. Here, we present Chromulinavorax destructans (Strain SeV1) the first isolate of this phylum to infect a representative from a widespread and ecologically significant group of heterotrophic flagellates, the microzooplankter Spumella elongata (Strain CCAP 955/1). Chromulinavorax destructans has a reduced 1.2 Mb genome that is so specialized for infection that it shows no evidence of complete metabolic pathways, but encodes an extensive transporter system for importing nutrients and energy in the form of ATP from the host. Its replication causes extensive reorganization and expansion of the mitochondrion, effectively surrounding the pathogen, consistent with its dependency on the host for energy. Nearly half (44%) of the inferred proteins contain signal sequences for secretion, including many without recognizable similarity to proteins of known function, as well as 98 copies of proteins with an ankyrin-repeat domain; ankyrin-repeats are known effectors of host modulation, suggesting the presence of an extensive host-manipulation apparatus. These observations help to cement members of this phylum as widespread and diverse parasites infecting a broad range of eukaryotic microbes.


April 21, 2020  |  

Genomic characterization of Kerstersia gyiorum SWMUKG01, an isolate from a patient with respiratory infection in China.

The Gram-negative bacterium Kerstersia gyiorum, a potential etiological agent of clinical infections, was isolated from several human patients presenting clinical symptoms. Its significance as a possible pathogen has been previously overlooked as no disease has thus far been definitively associated with this bacterium. To better understand how the organism contributes to the infectious disease, we determined the complete genomic sequence of K. gyiorum SWMUKG01, the first clinical isolate from southwest China.The genomic data obtained displayed a single circular chromosome of 3, 945, 801 base pairs in length, which contains 3, 441 protein-coding genes, 55 tRNA genes and 9 rRNA genes. Analysis on the full spectrum of protein coding genes for cellular structures, two-component regulatory systems and iron uptake pathways that may be important for the success of the bacterial survival, colonization and establishment in the host conferred new insights into the virulence characteristics of K. gyiorum. Phylogenomic comparisons with Alcaligenaceae species indicated that K. gyiorum SWMUKG01 had a close evolutionary relationships with Alcaligenes aquatilis and Alcaligenes faecalis.The comprehensive analysis presented in this work determinates for the first time a complete genome sequence of K. gyiorum, which is expected to provide useful information for subsequent studies on pathogenesis of this species.


April 21, 2020  |  

Complete Genome Sequence of “Candidatus Thioglobus sp.” Strain NP1, an Open-Ocean Isolate from the SUP05 Clade of Marine Gammaproteobacteria

Candidatus Thioglobus sp.textquotedblright strain NP1 is an open-ocean isolate from the SUP05 clade of Gammaproteobacteria. Whole-genome comparisons of strain NP1 to other sequenced isolates from the SUP05 clade indicate that it represents a new species of SUP05 that lacks the ability to fix inorganic carbon using the Calvin-Benson-Bassham cycle.


April 21, 2020  |  

Streptococcus gwangjuense sp. nov., Isolated from Human Pericoronitis.

A novel facultative anaerobic, Gram-stain-negative coccus, designated strain ChDC B345T, was isolated from human pericoronitis lesion and was characterized by polyphasic taxonomic analysis. The 16S ribosomal RNA gene (16S rDNA) sequence revealed that the strain belonged to the genus Streptococcus. The 16S rDNA sequence of strain ChDC B345T was most closely related to those of  Streptococcus mitis NCTC 12261T (99.5%) and Streptococcus pseudopneumoniae ATCC BAA-960T (99.5%). Complete genome of strain ChDC B345T was 1,972,471 bp in length and the G?+?C content was 40.2 mol%. Average nucleotide identity values between strain ChDC B345T and S. pseudopneumoniae ATCC BAA-960T or S. mitis NCTC 12261T were 92.17% and 93.63%, respectively. Genome-to-genome distance values between strain ChDC B345T and S. pseudopneumoniae ATCC BAA-960T or S. mitis NCTC 12261T were 47.8% (45.2-50.4%) and 53.0% (51.0-56.4%), respectively. Based on these results, strain ChDC B345T (=?KCOM 1679T?=?JCM 33299T) should be classified as a novel species of genus Streptococcus, for which we propose the name Streptococcus gwangjuense sp. nov.


April 21, 2020  |  

Tools and Strategies for Long-Read Sequencing and De Novo Assembly of Plant Genomes.

The commercial release of third-generation sequencing technologies (TGSTs), giving long and ultra-long sequencing reads, has stimulated the development of new tools for assembling highly contiguous genome sequences with unprecedented accuracy across complex repeat regions. We survey here a wide range of emerging sequencing platforms and analytical tools for de novo assembly, provide background information for each of their steps, and discuss the spectrum of available options. Our decision tree recommends workflows for the generation of a high-quality genome assembly when used in combination with the specific needs and resources of a project.Copyright © 2019 Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Characterizing the major structural variant alleles of the human genome.

In order to provide a comprehensive resource for human structural variants (SVs), we generated long-read sequence data and analyzed SVs for fifteen human genomes. We sequence resolved 99,604 insertions, deletions, and inversions including 2,238 (1.6 Mbp) that are shared among all discovery genomes with an additional 13,053 (6.9 Mbp) present in the majority, indicating minor alleles or errors in the reference. Genotyping in 440 additional genomes confirms the most common SVs in unique euchromatin are now sequence resolved. We report a ninefold SV bias toward the last 5 Mbp of human chromosomes with nearly 55% of all VNTRs (variable number of tandem repeats) mapping to this portion of the genome. We identify SVs affecting coding and noncoding regulatory loci improving annotation and interpretation of functional variation. These data provide the framework to construct a canonical human reference and a resource for developing advanced representations capable of capturing allelic diversity. Copyright © 2018 Elsevier Inc. All rights reserved.


April 21, 2020  |  

Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution.

We present reference-quality genome assembly and annotation for the stout camphor tree (Cinnamomum kanehirae (Laurales, Lauraceae)), the first sequenced member of the Magnoliidae comprising four orders (Laurales, Magnoliales, Canellales and Piperales) and over 9,000 species. Phylogenomic analysis of 13 representative seed plant genomes indicates that magnoliid and eudicot lineages share more recent common ancestry than monocots. Two whole-genome duplication events were inferred within the magnoliid lineage: one before divergence of Laurales and Magnoliales and the other within the Lauraceae. Small-scale segmental duplications and tandem duplications also contributed to innovation in the evolutionary history of Cinnamomum. For example, expansion of the terpenoid synthase gene subfamilies within the Laurales spawned the diversity of Cinnamomum monoterpenes and sesquiterpenes.


April 21, 2020  |  

The smut fungus Ustilago esculenta has a bipolar mating system with three idiomorphs larger than 500?kb.

Zizania latifolia Turcz., which is mainly distributed in Asia, has had a long cultivation history as a cereal and vegetable crop. On infection with the smut fungus Ustilago esculenta, Z. latifolia becomes an edible vegetable, water bamboo. Two main cultivars, with a green shell and red shell, are cultivated for commercial production in Taiwan. Previous studies indicated that cultivars of Z. latifolia may be related to the infected U. esculenta isolates. However, related research is limited. The infection process of the corn smut fungus Ustilago maydis is coupled with sexual development and under control of the mating type locus. Thus, we aimed to use the knowledge of U. maydis to reveal the mating system of U. esculenta. We collected water bamboo samples and isolated 145 U. esculenta strains from Taiwan’s major production areas. By using PCR and idiomorph screening among meiotic offspring and field isolates, we identified three idiomorphs of the mating type locus and found no sequence recombination between them. Whole-genome sequencing (Illumina and PacBio) suggested that the mating system of U. esculenta was bipolar. Mating type locus 1 (MAT-1) was 552,895?bp and contained 44% repeated sequences. Sequence comparison revealed that U. esculenta MAT-1 shared high gene synteny with Sporisorium reilianum and many repeats with Ustilago hordei MAT-1. These results can be utilized to further explore the genomic diversity of U. esculenta isolates and their application for water bamboo breeding. Copyright © 2019 Elsevier Inc. All rights reserved.


April 21, 2020  |  

Mitochondrial genome characterization of Melipona bicolor: Insights from the control region and gene expression data.

The stingless bee Melipona bicolor is the only bee in which true polygyny occurs. Its mitochondrial genome was first sequenced in 2008, but it was incomplete and no information about its transcription was known. We combined short and long reads of M. bicolor DNA with RNASeq data to obtain insights about mitochondrial evolution and gene expression in bees. The complete genome has 15,001?bp, including a control region of 255?bp that contains all conserved structures described in honeybees with the highest AT content reported so far for bees (98.1%), displaying a compact but functional region. Gene expression control is similar to other insects however unusual patterns of expression may suggest the existence of different isoforms for the mitochondrially encoded 12S rRNA. Results reveal unique and shared features of the mitochondrial genome in terms of sequence evolution and gene expression making M. bicolor an interesting model to study mitochondrial genomic evolution. Copyright © 2019 Elsevier B.V. All rights reserved.


April 21, 2020  |  

Complete genome of Pseudoalteromonas atlantica ECSMB14104, a Gammaproteobacterium inducing mussel settlement

Pseudoalteromonas is widely distributed in the marine environments and the biofilms formed by Pseudoalteromonas promote settlement of many species of invertebrates. Here, we show the complete genome of Pseudoalteromonas atlantica ECSMB14104, which was isolated from biofilms formed in the East China Sea and exhibited inducing activity on the Mytilus coruscus settlement. Complete genome of this strain containsa total of 3325 genes and the GC content of 41.02%. This genomic information is contributed to molecular mechanism of P. atlantica ECSMB14104 regulating mussel settlement.


April 21, 2020  |  

Antarctic blackfin icefish genome reveals adaptations to extreme environments.

Icefishes (suborder Notothenioidei; family Channichthyidae) are the only vertebrates that lack functional haemoglobin genes and red blood cells. Here, we report a high-quality genome assembly and linkage map for the Antarctic blackfin icefish Chaenocephalus aceratus, highlighting evolved genomic features for its unique physiology. Phylogenomic analysis revealed that Antarctic fish of the teleost suborder Notothenioidei, including icefishes, diverged from the stickleback lineage about 77 million years ago and subsequently evolved cold-adapted phenotypes as the Southern Ocean cooled to sub-zero temperatures. Our results show that genes involved in protection from ice damage, including genes encoding antifreeze glycoprotein and zona pellucida proteins, are highly expanded in the icefish genome. Furthermore, genes that encode enzymes that help to control cellular redox state, including members of the sod3 and nqo1 gene families, are expanded, probably as evolutionary adaptations to the relatively high concentration of oxygen dissolved in cold Antarctic waters. In contrast, some crucial regulators of circadian homeostasis (cry and per genes) are absent from the icefish genome, suggesting compromised control of biological rhythms in the polar light environment. The availability of the icefish genome sequence will accelerate our understanding of adaptation to extreme Antarctic environments.


April 21, 2020  |  

Patterns of non-ARD variation in more than 300 full-length HLA-DPB1 alleles.

Our understanding of sequence variation in the HLA-DPB1 gene is largely restricted to the hypervariable antigen recognition domain (ARD) encoded by exon 2. Here, we employed a redundant sequencing strategy combining long-read and short-read data to accurately phase and characterise in full length the majority of common and well-documented (CWD) DPB1 alleles as well as alleles with an observed frequency of at least 0.0006% in our predominantly European sample set. We generated 664 DPB1 sequences, comprising 279 distinct allelic variants. This allows us to present the, to date, most comprehensive analysis of the nature and extent of DPB1 sequence variation. The full-length sequence analysis revealed the existence of two highly diverged allele clades. These clades correlate with the rs9277534 A???G variant, a known expression marker located in the 3′-UTR. The two clades are fully differentiated by 174 fixed polymorphisms throughout a 3.6?kb stretch at the 3′-end of DPB1. The region upstream of this differentiation zone is characterised by increasingly shared variation between the clades. The low-expression A clade comprises 59% of the distinct allelic sequences including the three by far most frequent DPB1 alleles, DPB1*04:01, DPB1*02:01 and DPB1*04:02. Alleles in the A clade show reduced nucleotide diversity with an excess of rare variants when compared to the high-expression G clade. This pattern is consistent with a scenario of recent proliferation of A-clade alleles. The full-length characterisation of all but the most rare DPB1 alleles will benefit the application of NGS for DPB1 genotyping and provides a helpful framework for a deeper understanding of high- and low-expression alleles and their implications in the context of unrelated haematopoietic stem-cell transplantation.Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

Diversity of phytobeneficial traits revealed by whole-genome analysis of worldwide-isolated phenazine-producing Pseudomonas spp.

Plant-beneficial Pseudomonas spp. competitively colonize the rhizosphere and display plant-growth promotion and/or disease-suppression activities. Some strains within the P. fluorescens species complex produce phenazine derivatives, such as phenazine-1-carboxylic acid. These antimicrobial compounds are broadly inhibitory to numerous soil-dwelling plant pathogens and play a role in the ecological competence of phenazine-producing Pseudomonas spp. We assembled a collection encompassing 63 strains representative of the worldwide diversity of plant-beneficial phenazine-producing Pseudomonas spp. In this study, we report the sequencing of 58 complete genomes using PacBio RS II sequencing technology. Distributed among four subgroups within the P. fluorescens species complex, the diversity of our collection is reflected by the large pangenome which accounts for 25 413 protein-coding genes. We identified genes and clusters encoding for numerous phytobeneficial traits, including antibiotics, siderophores and cyclic lipopeptides biosynthesis, some of which were previously unknown in these microorganisms. Finally, we gained insight into the evolutionary history of the phenazine biosynthetic operon. Given its diverse genomic context, it is likely that this operon was relocated several times during Pseudomonas evolution. Our findings acknowledge the tremendous diversity of plant-beneficial phenazine-producing Pseudomonas spp., paving the way for comparative analyses to identify new genetic determinants involved in biocontrol, plant-growth promotion and rhizosphere competence. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.