Menu
September 22, 2019  |  

Ginseng Genome Database: an open-access platform for genomics of Panax ginseng.

The ginseng (Panax ginseng C.A. Meyer) is a perennial herbaceous plant that has been used in traditional oriental medicine for thousands of years. Ginsenosides, which have significant pharmacological effects on human health, are the foremost bioactive constituents in this plant. Having realized the importance of this plant to humans, an integrated omics resource becomes indispensable to facilitate genomic research, molecular breeding and pharmacological study of this herb.The first draft genome sequences of P. ginseng cultivar “Chunpoong” were reported recently. Here, using the draft genome, transcriptome, and functional annotation datasets of P. ginseng, we have constructed the Ginseng Genome Database http://ginsengdb.snu.ac.kr /, the first open-access platform to provide comprehensive genomic resources of P. ginseng. The current version of this database provides the most up-to-date draft genome sequence (of approximately 3000 Mbp of scaffold sequences) along with the structural and functional annotations for 59,352 genes and digital expression of genes based on transcriptome data from different tissues, growth stages and treatments. In addition, tools for visualization and the genomic data from various analyses are provided. All data in the database were manually curated and integrated within a user-friendly query page.This database provides valuable resources for a range of research fields related to P. ginseng and other species belonging to the Apiales order as well as for plant research communities in general. Ginseng genome database can be accessed at http://ginsengdb.snu.ac.kr /.


September 22, 2019  |  

N6-methyladenine DNA modification in the human genome.

DNA N6-methyladenine (6mA) modification is the most prevalent DNA modification in prokaryotes, but whether it exists in human cells and whether it plays a role in human diseases remain enigmatic. Here, we showed that 6mA is extensively present in the human genome, and we cataloged 881,240 6mA sites accounting for ~0.051% of the total adenines. [G/C]AGG[C/T] was the most significantly associated motif with 6mA modification. 6mA sites were enriched in the coding regions and mark actively transcribed genes in human cells. DNA 6mA and N6-demethyladenine modification in the human genome were mediated by methyltransferase N6AMT1 and demethylase ALKBH1, respectively. The abundance of 6mA was significantly lower in cancers, accompanied by decreased N6AMT1 and increased ALKBH1 levels, and downregulation of 6mA modification levels promoted tumorigenesis. Collectively, our results demonstrate that DNA 6mA modification is extensively present in human cells and the decrease of genomic DNA 6mA promotes human tumorigenesis. Copyright © 2018 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Whole genome and transcriptome maps of the entirely black native Korean chicken breed Yeonsan Ogye.

Yeonsan Ogye (YO), an indigenous Korean chicken breed (Gallus gallus domesticus), has entirely black external features and internal organs. In this study, the draft genome of YO was assembled using a hybrid de novo assembly method that takes advantage of high-depth Illumina short reads (376.6X) and low-depth Pacific Biosciences (PacBio) long reads (9.7X).The contig and scaffold NG50s of the hybrid de novo assembly were 362.3 Kbp and 16.8 Mbp, respectively. The completeness (97.6%) of the draft genome (Ogye_1.1) was evaluated with single-copy orthologous genes using Benchmarking Universal Single-Copy Orthologs and found to be comparable to the current chicken reference genome (galGal5; 97.4%; contigs were assembled with high-depth PacBio long reads (50X) and scaffolded with short reads) and superior to other avian genomes (92%-93%; assembled with short read-only or hybrid methods). Compared to galGal4 and galGal5, the draft genome included 551 structural variations including the fibromelanosis (FM) locus duplication, related to hyperpigmentation. To comprehensively reconstruct transcriptome maps, RNA sequencing and reduced representation bisulfite sequencing data were analyzed from 20 tissues, including 4 black tissues (skin, shank, comb, and fascia). The maps included 15,766 protein-coding and 6,900 long noncoding RNA genes, many of which were tissue-specifically expressed and displayed tissue-specific DNA methylation patterns in the promoter regions.We expect that the resulting genome sequence and transcriptome maps will be valuable resources for studying domestic chicken breeds, including black-skinned chickens, as well as for understanding genomic differences between breeds and the evolution of hyperpigmented chickens and functional elements related to hyperpigmentation.


September 22, 2019  |  

Draft genome assembly of the invasive cane toad, Rhinella marina.

The cane toad (Rhinella marina formerly Bufo marinus) is a species native to Central and South America that has spread across many regions of the globe. Cane toads are known for their rapid adaptation and deleterious impacts on native fauna in invaded regions. However, despite an iconic status, there are major gaps in our understanding of cane toad genetics. The availability of a genome would help to close these gaps and accelerate cane toad research.We report a draft genome assembly for R. marina, the first of its kind for the Bufonidae family. We used a combination of long-read Pacific Biosciences RS II and short-read Illumina HiSeq X sequencing to generate 359.5 Gb of raw sequence data. The final hybrid assembly of 31,392 scaffolds was 2.55 Gb in length with a scaffold N50 of 168 kb. BUSCO analysis revealed that the assembly included full length or partial fragments of 90.6% of tetrapod universal single-copy orthologs (n = 3950), illustrating that the gene-containing regions have been well assembled. Annotation predicted 25,846 protein coding genes with similarity to known proteins in Swiss-Prot. Repeat sequences were estimated to account for 63.9% of the assembly.The R. marina draft genome assembly will be an invaluable resource that can be used to further probe the biology of this invasive species. Future analysis of the genome will provide insights into cane toad evolution and enrich our understanding of their interplay with the ecosystem at large.


September 22, 2019  |  

Loss of Rap1 supports recombination-based telomere maintenance independent of RNA-DNA hybrids in fission yeast

To investigate the molecular changes needed for cells to maintain their telomeres by recombination, we monitored telomere appearance during serial culture of fission yeast cells lacking the telomerase recruitment factor Ccq1. Rad52 is loaded onto critically short telomeres shortly after germination despite continued telomere erosion, suggesting that recruitment of recombination factors is not sufficient to maintain telomeres in the absence of telomerase function. Instead, survivor formation coincides with the derepression of telomeric repeat-containing RNA (TERRA). Degradation of telomere-associated TERRA in this context drives a severe growth crisis, ultimately leading to a distinct type of linear survivor with altered cytological telomere characteristics and the eviction of the shelterin component Rap1 (but not the TRF1/TRF2 orthologue, Taz1) from the telomere. We demonstrate that deletion of Rap1 is protective, preventing the growth crisis that is otherwise triggered by degradation of telomere-engaged TERRA in survivors with linear chromosomes. Thus, modulating the stoichiometry of shelterin components appears to support recombination-dependent survivors to persist in the absence of telomere-engaged TERRA.


September 22, 2019  |  

Whole-genome landscape of Medicago truncatula symbiotic genes.

Advances in deciphering the functional architecture of eukaryotic genomes have been facilitated by recent breakthroughs in sequencing technologies, enabling a more comprehensive representation of genes and repeat elements in genome sequence assemblies, as well as more sensitive and tissue-specific analyses of gene expression. Here we show that PacBio sequencing has led to a substantially improved genome assembly of Medicago truncatula A17, a legume model species notable for endosymbiosis studies1, and has enabled the identification of genome rearrangements between genotypes at a near-base-pair resolution. Annotation of the new M. truncatula genome sequence has allowed for a thorough analysis of transposable elements and their dynamics, as well as the identification of new players involved in symbiotic nodule development, in particular 1,037 upregulated long non-coding RNAs (lncRNAs). We have also discovered that a substantial proportion (~35% and 38%, respectively) of the genes upregulated in nodules or expressed in the nodule differentiation zone colocalize in genomic clusters (270 and 211, respectively), here termed symbiotic islands. These islands contain numerous expressed lncRNA genes and display differentially both DNA methylation and histone marks. Epigenetic regulations and lncRNAs are therefore attractive candidate elements for the orchestration of symbiotic gene expression in the M. truncatula genome.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.