Menu
September 22, 2019  |  

Ring synthetic chromosome V SCRaMbLE.

Structural variations (SVs) exert important functional impacts on biological phenotypic diversity. Here we show a ring synthetic yeast chromosome V (ring_synV) can be used to continuously generate complex genomic variations and improve the production of prodeoxyviolacein (PDV) by applying Synthetic Chromosome Recombination and Modification by LoxP-mediated Evolution (SCRaMbLE) in haploid yeast cells. The SCRaMbLE of ring_synV generates aneuploid yeast strains with increased PDV productivity, and we identify aneuploid chromosome I, III, VI, XII, XIII, and ring_synV. The neochromosome of SCRaMbLEd ring_synV generated more unbalanced forms of variations, including duplication, insertions, and balanced forms of translocations and inversions than its linear form. Furthermore, of the 29 novel SVs detected, 11 prompted the PDV biosynthesis; and the deletion of uncharacterized gene YER182W is related to the improvement of the PDV. Overall, the SCRaMbLEing ring_synV embraces the evolution of the genome by modifying the chromosome number, structure, and organization, identifying targets for phenotypic comprehension.


September 22, 2019  |  

Repeated inversions within a pannier intron drive diversification of intraspecific colour patterns of ladybird beetles.

How genetic information is modified to generate phenotypic variation within a species is one of the central questions in evolutionary biology. Here we focus on the striking intraspecific diversity of >200 aposematic elytral (forewing) colour patterns of the multicoloured Asian ladybird beetle, Harmonia axyridis, which is regulated by a tightly linked genetic locus h. Our loss-of-function analyses, genetic association studies, de novo genome assemblies, and gene expression data reveal that the GATA transcription factor gene pannier is the major regulatory gene located at the h locus, and suggest that repeated inversions and cis-regulatory modifications at pannier led to the expansion of colour pattern variation in H. axyridis. Moreover, we show that the colour-patterning function of pannier is conserved in the seven-spotted ladybird beetle, Coccinella septempunctata, suggesting that H. axyridis’ extraordinary intraspecific variation may have arisen from ancient modifications in conserved elytral colour-patterning mechanisms in ladybird beetles.


September 22, 2019  |  

B chromosomes of the Asian seabass (Lates calcarifer) contribute to genome variations at the level of individuals and populations.

The Asian seabass (Lates calcarifer) is a bony fish from the Latidae family, which is widely distributed in the tropical Indo-West Pacific region. The karyotype of the Asian seabass contains 24 pairs of A chromosomes and a variable number of AT- and GC-rich B chromosomes (Bchrs or Bs). Dot-like shaped and nucleolus-associated AT-rich Bs were microdissected and sequenced earlier. Here we analyzed DNA fragments from Bs to determine their repeat and gene contents using the Asian seabass genome as a reference. Fragments of 75 genes, including an 18S rRNA gene, were found in the Bs; repeats represented 2% of the Bchr assembly. The 18S rDNA of the standard genome and Bs were similar and enriched with fragments of transposable elements. A higher nuclei DNA content in the male gonad and somatic tissue, compared to the female gonad, was demonstrated by flow cytometry. This variation in DNA content could be associated with the intra-individual variation in the number of Bs. A comparison between the copy number variation among the B-related fragments from whole genome resequencing data of Asian seabass individuals identified similar profiles between those from the South-East Asian/Philippines and Indian region but not the Australian ones. Our results suggest that Bs might cause variations in the genome among the individuals and populations of Asian seabass. A personalized copy number approach for segmental duplication detection offers a suitable tool for population-level analysis across specimens with low coverage genome sequencing.


September 22, 2019  |  

Genome-wide analysis of Borrelia turcica and ‘Candidatus Borrelia tachyglossi’ shows relapsing fever-like genomes with unique genomic links to Lyme disease Borrelia.

Borrelia are tick-borne bacteria that in humans are the aetiological agents of Lyme disease and relapsing fever. Here we present the first genomes of B. turcica and B. tachyglossi, members of a recently described and rapidly expanding Borrelia clade associated with reptile (B. turcica) or echidna (B. tachyglossi) hosts, transmitted by hard ticks, and of unknown pathogenicity. Borrelia tachyglossi and B. turcica genomes are similar to those of relapsing fever Borrelia species, containing a linear ~ 900?kb chromosome, a single long (> 70?kb) linear plasmid, and numerous short (< 40?kb) linear and circular plasmids, as well as a suite of housekeeping and macronutrient biosynthesis genes which are not found in Lyme disease Borrelia. Additionally, both B. tachyglossi and B. turcica contain paralogous vsp and vlp proteins homologous to those used in the multiphasic antigen-switching system used by relapsing fever Borrelia to evade vertebrate immune responses, although their number was greatly reduced compared to human-infectious species. However, B. tachyglossi and B. turcica chromosomes also contain numerous genes orthologous to Lyme disease Borrelia-specific genes, demonstrating a unique evolutionary, and potentially phenotypic link between these groups. Borrelia tachyglossi and B. turcica genomes also have unique genetic features, including degraded and deleted tRNA modification genes, and an expanded range of macronutrient salvage and biosynthesis genes compared to relapsing fever and Lyme disease Borrelia. These genomes and genomic comparisons provide an insight into the biology and evolutionary origin of these Borrelia, and provide a valuable resource for future work. Copyright © 2018 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Spread of carbapenem resistance by transposition and conjugation among Pseudomonas aeruginosa.

The emergence of carbapenem-resistant Pseudomonas aeruginosa represents a worldwide problem. To understand the carbapenem-resistance mechanisms and their spreading among P. aeruginosa strains, whole genome sequences were determined of two extensively drug-resistant strains that are endemic in Dutch hospitals. Strain Carb01 63 is of O-antigen serotype O12 and of sequence type ST111, whilst S04 90 is a serotype O11 strain of ST446. Both strains carry a gene for metallo-ß-lactamase VIM-2 flanked by two aacA29 genes encoding aminoglycoside acetyltransferases on a class 1 integron. The integron is located on the chromosome in strain Carb01 63 and on a plasmid in strain S04 90. The backbone of the 159-kb plasmid, designated pS04 90, is similar to a previously described plasmid, pND6-2, from Pseudomonas putida. Analysis of the context of the integron showed that it is present in both strains on a ~30-kb mosaic DNA segment composed of four different transposons that can presumably act together as a novel, active, composite transposon. Apart from the presence of a 1237-bp insertion sequence element in the composite transposon on pS04 90, these transposons show > 99% sequence identity indicating that transposition between plasmid and chromosome could have occurred only very recently. The pS04 90 plasmid could be transferred by conjugation to a susceptible P. aeruginosa strain. A second class 1 integron containing a gene for a CARB-2 ß-lactamase flanked by an aacA4′-8 and an aadA2 gene, encoding an aminoglycoside acetyltransferase and adenylyltransferase, respectively, was present only in strain Carb01 63. This integron is located also on a composite transposon that is inserted in an integrative and conjugative element on the chromosome. Additionally, this strain contains a frameshift mutation in the oprD gene encoding a porin involved in the transport of carbapenems across the outer membrane. Together, the results demonstrate that integron-encoded carbapenem and carbapenicillin resistance can easily be disseminated by transposition and conjugation among Pseudomonas aeruginosa strains.


September 22, 2019  |  

Structural variants exhibit allelic heterogeneity and shape variation in complex traits

Despite extensive effort to reveal the genetic basis of complex phenotypic variation, studies typically explain only a fraction of trait heritability. It has been hypothesized that individually rare hidden structural variants (SVs) could account for a significant fraction of variation in complex traits. To investigate this hypothesis, we assembled 14 Drosophila melanogaster genomes and systematically identified more than 20,000 euchromatic SVs, of which ~40% are invisible to high specificity short read genotyping approaches. SVs are common in Drosophila genes, with almost one third of diploid individuals harboring an SV in genes larger than 5kb, and nearly a quarter harboring multiple SVs in genes larger than 10kb. We show that SV alleles are rarer than amino acid polymorphisms, implying that they are more strongly deleterious. A number of functionally important genes harbor previously hidden structural variants that likely affect complex phenotypes (e.g., Cyp6g1, Drsl5, Cyp28d1&2, InR, and Gss1&2). Furthermore, SVs are overrepresented in quantitative trait locus candidate genes from eight Drosophila Synthetic Population Resource (DSPR) mapping experiments. We conclude that SVs are pervasive in genomes, are frequently present as heterogeneous allelic series, and can act as rare alleles of large effect.


September 22, 2019  |  

De novo assembly, delivery and expression of a 101 kb human gene in mouse cells

Design and large-scale synthesis of DNA has been applied to the functional study of viral and microbial genomes. New and expanded technology development is required to unlock the transformative potential of such bottom-up approaches to the study of larger, mammalian genomes. Two major challenges include assembling and delivering long DNA sequences. Here we describe a pipeline for de novo DNA assembly and delivery that enables functional evaluation of mammalian genes on the length scale of 100 kb. The DNA assembly step is supported by an integrated robotic workcell. We assemble the 101 kb human HPRT1 gene in yeast, deliver it to mouse cells, and show expression of the human protein from its full-length gene. This pipeline provides a framework for producing systematic, designer variants of any mammalian gene locus for functional evaluation in cells.


September 22, 2019  |  

Parliament2: Fast structural variant calling using optimized combinations of callers

Here we present Parliament2: a structural variant caller which combines multiple best-in-class structural variant callers to create a highly accurate callset. This captures more events than the individual callers achieve independently. Parliament2 uses a call-overlap-genotype approach that is highly extensible to new methods and presents users the choice to run some or all of Breakdancer, Breakseq, CNVnator, Delly, Lumpy, and Manta to run. Parliament2 applies an additional parallelization framework to speed certain callers and executes these in parallel, taking advantage of the different resource requirements to complete structural variant calling much faster than running the programs individually. Parliament2 is available as a Docker container, which pre-installs all required dependencies. This allows users to run any caller with easy installation and execution. This Docker container can easily be deployed in cloud or local environments and is available as an app on DNAnexus.


September 22, 2019  |  

Identification of the KPC plasmid pCT-KPC334: New insights on the evolutionary pathway of epidemic plasmids harboring fosA3-blaKPC-2 genes.

A novel, non-conjugative plasmid pKP1034 isolated from a fosfomycin-resistant, carbapenemase-producing Klebsiella pneumonia strain KP1034 was recently reported to carry fosA3, blaKPC-2, blaCTX-M-65, blaSHV-12 and rmtB genes, and was hypothesized to evolve from several recombination events of two closely related plasmids, pHN7A8 and pKPC-LK30 [1]. In this study, a plasmid pCT-KPC334 carrying fosA3, blaKPC-2, blaCTX-M-65, blaSHV-12, blaTEM-1, and rmtB genes was identified, providing evidence on the evolutionary pathway of plasmids harboring fosA3-blaKPC-2 genes.


September 22, 2019  |  

4.5 years within-patient evolution of a colistin resistant KPC-producing Klebsiella pneumoniae ST258.

Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-Kp) has emerged globally over the last decade as a major nosocomial pathogen that threatens patient care. These highly resistant bacteria are mostly associated with a single Kp clonal group, CG258, but the reasons for its host and hospital adaptation remain largely unknown.We analyzed the in vivo evolution of a colistin-resistant KPC-Kp CG258 strain that contaminated a patient following an endoscopy and was responsible for a fatal bacteremia 4.5 years later. Whole-genome sequencing was performed on 17 KPC-Kp isolates from this patient; single-nucleotide polymorphisms were analyzed and their implication in antimicrobial resistance and bacterial host adaptation investigated.The patient KPC-Kp strain diversified over 4.5 years at a rate of 7.5 substitutions per genome per year, resulting in broad phenotypic modifications. After 2 years of carriage, all isolates restored susceptibility to colistin. Higher expression of the fimbriae conferred the ability to produce more biofilm, and the isolate responsible for a bacteremia grew in human serum. The convergent mutations occurring in specific pathways, such as the respiratory chain and the cell envelope, revealed a complex long-term adaptation of KPC-Kp.Broad genomic and phenotypic diversification and the parallel selection of pathoadaptive mutations might contribute to long-term carriage and virulence of KPC-Kp CG258 strains and to the dissemination of this clone.


September 22, 2019  |  

Development and validation of 58K SNP-array and high-density linkage map in Nile tilapia (O. niloticus).

Despite being the second most important aquaculture species in the world accounting for 7.4% of global production in 2015, tilapia aquaculture has lacked genomic tools like SNP-arrays and high-density linkage maps to improve selection accuracy and accelerate genetic progress. In this paper, we describe the development of a genotyping array containing more than 58,000 SNPs for Nile tilapia (Oreochromis niloticus). SNPs were identified from whole genome resequencing of 32 individuals from the commercial population of the Genomar strain, and were selected for the SNP-array based on polymorphic information content and physical distribution across the genome using the Orenil1.1 genome assembly as reference sequence. SNP-performance was evaluated by genotyping 4991 individuals, including 689 offspring belonging to 41 full-sib families, which revealed high-quality genotype data for 43,588 SNPs. A preliminary genetic linkage map was constructed using Lepmap2 which in turn was integrated with information from the O_niloticus_UMD1 genome assembly to produce an integrated physical and genetic linkage map comprising 40,186 SNPs distributed across 22 linkage groups (LGs). Around one-third of the LGs showed a different recombination rate between sexes, with the female being greater than the male map by a factor of 1.2 (1632.9 to 1359.6 cM, respectively), with most LGs displaying a sigmoid recombination profile. Finally, the sex-determining locus was mapped to position 40.53 cM on LG23, in the vicinity of the anti-Müllerian hormone (amh) gene. These new resources has the potential to greatly influence and improve the genetic gain when applying genomic selection and surpass the difficulties of efficient selection for invasively measured traits in Nile tilapia.


September 22, 2019  |  

Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen.

The rapid emergence of antibiotic-resistant pathogenic bacteria has accelerated the search for new antibiotics. Many clinically used antibacterials were discovered through culturing a single microbial species under nutrient-rich conditions, but in the environment, bacteria constantly encounter poor nutrient conditions and interact with neighboring microbial species. In an effort to recapitulate this environment, we generated a nine-strain actinomycete community and used 16S rDNA sequencing to deconvolute the stochastic production of antimicrobial activity that was not observed from any of the axenic cultures. We subsequently simplified the community to just two strains and identified Amycolatopsis sp. AA4 as the producing strain and Streptomyces coelicolor M145 as an inducing strain. Bioassay-guided isolation identified amycomicin (AMY), a highly modified fatty acid containing an epoxide isonitrile warhead as a potent and specific inhibitor of Staphylococcus aureus Amycomicin targets an essential enzyme (FabH) in fatty acid biosynthesis and reduces S. aureus infection in a mouse skin-infection model. The discovery of AMY demonstrates the utility of screening complex communities against specific targets to discover small-molecule antibiotics.


September 22, 2019  |  

Genome plasticity of agr-defective Staphylococcus aureus during clinical infection.

Therapy for bacteremia caused by Staphylococcus aureus is often ineffective, even when treatment conditions are optimal according to experimental protocols. Adapted subclones, such as those bearing mutations that attenuate agr-mediated virulence activation, are associated with persistent infection and patient mortality. To identify additional alterations in agr-defective mutants, we sequenced and assembled the complete genomes of clone pairs from colonizing and infected sites of several patients in whom S. aureus demonstrated a within-host loss of agr function. We report that events associated with agr inactivation result in agr-defective blood and nares strain pairs that are enriched in mutations compared to pairs from wild-type controls. The random distribution of mutations between colonizing and infecting strains from the same patient, and between strains from different patients, suggests that much of the genetic complexity of agr-defective strains results from prolonged infection or therapy-induced stress. However, in one of the agr-defective infecting strains, multiple genetic changes resulted in increased virulence in a murine model of bloodstream infection, bypassing the mutation of agr and raising the possibility that some changes were selected. Expression profiling correlated the elevated virulence of this agr-defective mutant to restored expression of the agr-regulated ESAT6-like type VII secretion system, a known virulence factor. Thus, additional mutations outside the agr locus can contribute to diversification and adaptation during infection by S. aureus agr mutants associated with poor patient outcomes. Copyright © 2018 Altman et al.


September 22, 2019  |  

The opium poppy genome and morphinan production.

Morphinan-based painkillers are derived from opium poppy (Papaver somniferum L.). We report a draft of the opium poppy genome, with 2.72 gigabases assembled into 11 chromosomes with contig N50 and scaffold N50 of 1.77 and 204 megabases, respectively. Synteny analysis suggests a whole-genome duplication at ~7.8 million years ago and ancient segmental or whole-genome duplication(s) that occurred before the Papaveraceae-Ranunculaceae divergence 110 million years ago. Syntenic blocks representative of phthalideisoquinoline and morphinan components of a benzylisoquinoline alkaloid cluster of 15 genes provide insight into how this cluster evolved. Paralog analysis identified P450 and oxidoreductase genes that combined to form the STORR gene fusion essential for morphinan biosynthesis in opium poppy. Thus, gene duplication, rearrangement, and fusion events have led to evolution of specialized metabolic products in opium poppy. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


September 22, 2019  |  

Comparative genomics of Czech vaccine strains of Bordetella pertussis.

Bordetella pertussis is a strictly human pathogen causing the respiratory infectious disease called whooping cough or pertussis. B. pertussis adaptation to acellular pertussis vaccine pressure has been repeatedly highlighted, but recent data indicate that adaptation of circulating strains started already in the era of the whole cell pertussis vaccine (wP) use. We sequenced the genomes of five B. pertussis wP vaccine strains isolated in the former Czechoslovakia in the pre-wP (1954-1957) and early wP (1958-1965) eras, when only limited population travel into and out of the country was possible. Four isolates exhibit a similar genome organization and form a distinct phylogenetic cluster with a geographic signature. The fifth strain is rather distinct, both in genome organization and SNP-based phylogeny. Surprisingly, despite isolation of this strain before 1966, its closest sequenced relative appears to be a recent isolate from the US. On the genome content level, the five vaccine strains contained both new and already described regions of difference. One of the new regions contains duplicated genes potentially associated with transport across the membrane. The prevalence of this region in recent isolates indicates that its spread might be associated with selective advantage leading to increased strain fitness.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.