April 21, 2020  |  

Long-read sequencing for rare human genetic diseases.

During the past decade, the search for pathogenic mutations in rare human genetic diseases has involved huge efforts to sequence coding regions, or the entire genome, using massively parallel short-read sequencers. However, the approximate current diagnostic rate is <50% using these approaches, and there remain many rare genetic diseases with unknown cause. There may be many reasons for this, but one plausible explanation is that the responsible mutations are in regions of the genome that are difficult to sequence using conventional technologies (e.g., tandem-repeat expansion or complex chromosomal structural aberrations). Despite the drawbacks of high cost and a shortage of standard analytical methods, several studies have analyzed pathogenic changes in the genome using long-read sequencers. The results of these studies provide hope that further application of long-read sequencers to identify the causative mutations in unsolved genetic diseases may expand our understanding of the human genome and diseases. Such approaches may also be applied to molecular diagnosis and therapeutic strategies for patients with genetic diseases in the future.

April 21, 2020  |  

Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases.

The widespread occurrence of repetitive stretches of DNA in genomes of organisms across the tree of life imposes fundamental challenges for sequencing, genome assembly, and automated annotation of genes and proteins. This multi-level problem can lead to errors in genome and protein databases that are often not recognized or acknowledged. As a consequence, end users working with sequences with repetitive regions are faced with ‘ready-to-use’ deposited data whose trustworthiness is difficult to determine, let alone to quantify. Here, we provide a review of the problems associated with tandem repeat sequences that originate from different stages during the sequencing-assembly-annotation-deposition workflow, and that may proliferate in public database repositories affecting all downstream analyses. As a case study, we provide examples of the Atlantic cod genome, whose sequencing and assembly were hindered by a particularly high prevalence of tandem repeats. We complement this case study with examples from other species, where mis-annotations and sequencing errors have propagated into protein databases. With this review, we aim to raise the awareness level within the community of database users, and alert scientists working in the underlying workflow of database creation that the data they omit or improperly assemble may well contain important biological information valuable to others. © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.