Menu
September 22, 2019  |  

Nucleotide-binding resistance gene signatures in sugar beet, insights from a new reference genome.

Nucleotide-binding (NB-ARC), leucine-rich-repeat genes (NLRs) account for 60.8% of resistance (R) genes molecularly characterized from plants. NLRs exist as large gene families prone to tandem duplication and transposition, with high sequence diversity among crops and their wild relatives. This diversity can be a source of new disease resistance, but difficulty in distinguishing specific sequences from homologous gene family members hinders characterization of resistance for improving crop varieties. Current genome sequencing and assembly technologies, especially those using long-read sequencing, are improving resolution of repeat-rich genomic regions and clarifying locations of duplicated genes, such as NLRs. Using the conserved NB-ARC domain as a model, 231 tentative NB-ARC loci were identified in a highly contiguous genome assembly of sugar beet, revealing diverged and truncated NB-ARC signatures as well as full-length sequences. The NB-ARC-associated proteins contained NLR resistance gene domains, including TIR, CC, and LRR, as well as other integrated domains. Phylogenetic relationships of partial and complete domains were determined, and patterns of physical clustering in the genome were evaluated. Comparison of sugar beet NB-ARC domains to validated R genes from monocots and eudicots suggested extensive B. vulgaris-specific subfamily expansions. The NLR landscape in the rhizomania resistance conferring Rz region of Chromosome 3 was characterized, identifying 26 NLR-like sequences spanning 20 MB. This work presents the first detailed view of NLR family composition in a member of the Caryophyllales, builds a foundation for additional disease resistance work in B. vulgaris, and demonstrates an additional nucleic-acid-based method for NLR prediction in non-model plant species. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.


September 22, 2019  |  

Landscape of the genome and host cell response of Mycobacterium shigaense reveals pathogenic features.

A systems approach was used to explore the genome and transcriptome of Mycobacterium shigaense, a new opportunistic pathogen isolated from a patient with a skin infection, and the host response transcriptome was assessed using a macrophage infection model. The M. shigaense genome comprises 5,207,883?bp, with 67.2% G+C content and 5098 predicted coding genes. Evolutionarily, the bacterium belongs to a cluster in the phylogenetic tree along with three target opportunistic pathogenic strains, namely, M. avium, M. triplex and M. simiae. Potential virulence genes are indeed expressed by M. shigaense under culture conditions. Phenotypically, M. shigaense had similar infection and replication capacities in a macrophage model as the opportunistic species compared to M. tuberculosis. M. shigaense activated NF-?B, TNF, cytokines and chemokines in the host innate immune-related signaling pathways and elicited an early response shared with pathogenic bacilli except M. tuberculosis. M. shigaense upregulated specific host response genes such as TLR7, CCL4 and CXCL5. We performed an integrated and comparative analysis of M. shigaense. Multigroup comparison indicated certain differences with typical pathogenic bacilli in terms of gene features and the macrophage response.


September 22, 2019  |  

Comparative genomics of Pseudomonas syringae reveals convergent gene gain and loss associated with specialization onto cherry (Prunus avium).

Genome-wide analyses of the effector- and toxin-encoding genes were used to examine the phylogenetics and evolution of pathogenicity amongst diverse strains of Pseudomonas syringae causing bacterial canker of cherry (Prunus avium), including pathovars P. syringae pv morsprunorum (Psm) races 1 and 2, P. syringae pv syringae (Pss) and P. syringae pv avii. Phylogenetic analyses revealed Psm races and P. syringae pv avii clades were distinct and were each monophyletic, whereas cherry-pathogenic strains of Pss were interspersed amongst strains from other host species. A maximum likelihood approach was used to predict effectors associated with pathogenicity on cherry. Pss possesses a smaller repertoire of type III effectors but has more toxin biosynthesis clusters than Psm and P. syringae pv avii. Evolution of cherry pathogenicity was correlated with gain of genes such as hopAR1 and hopBB1 through putative phage transfer and horizontal transfer respectively. By contrast, loss of the avrPto/hopAB redundant effector group was observed in cherry-pathogenic clades. Ectopic expression of hopAB and hopC1 triggered the hypersensitive reaction in cherry leaves, confirming computational predictions. Cherry canker provides a fascinating example of convergent evolution of pathogenicity that is explained by the mix of effector and toxin repertoires acting on a common host.© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.


September 22, 2019  |  

T-independent IFN? and B cells cooperate to prevent mortality associated with disseminated Chlamydia muridarum genital tract infection.

CD4 T cells and antibody are required for optimal acquired immunity to C. muridarum genital tract infection, and T cell-mediated IFN? production is necessary to clear infection in the absence of humoral immunity. However, the role of T cell-independent immune responses during primary infection remains unclear. We investigated this question by inoculating wild-type and immune-deficient mice with C. muridarum CM001, a clonal isolate capable of enhanced extragenital replication. Genital inoculation of wild-type mice resulted in transient dissemination to the lungs and spleen that then was rapidly cleared from these organs. However, CM001 genital infection proved lethal for STAT1-/- and IFNG-/- mice, where IFN? signaling is absent, and for Rag1-/- mice that lack T and B cells, but retain innate IFN? signaling. In contrast, B cell-deficient muMT mice that can generate a Th1 response, and T cell-deficient mice with intact B cell and innate IFN? signaling survived. These data collectively indicate that IFN? prevents lethal CM001 dissemination in the absence of T cells and suggests a B cell co-requirement. Adoptive transfer of convalescent immune sera, but not naïve IgM, to Rag1-/- mice infected with CM001 significantly increased survival time, while transfer of naïve B cells completely rescued Rag1-/- mice from CM001 lethality. Protection was associated with a significant reduction in the lung chlamydial burden of genitally infected mice. These data reveal an important cooperation between T-independent B cell responses and innate IFN? in chlamydial host defense, and suggest interactions between T-independent antibody and IFN? are essential for limiting extragenital dissemination. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

A molecular window into the biology and epidemiology of Pneumocystis spp.

Pneumocystis, a unique atypical fungus with an elusive lifestyle, has had an important medical history. It came to prominence as an opportunistic pathogen that not only can cause life-threatening pneumonia in patients with HIV infection and other immunodeficiencies but also can colonize the lungs of healthy individuals from a very early age. The genus Pneumocystis includes a group of closely related but heterogeneous organisms that have a worldwide distribution, have been detected in multiple mammalian species, are highly host species specific, inhabit the lungs almost exclusively, and have never convincingly been cultured in vitro, making Pneumocystis a fascinating but difficult-to-study organism. Improved molecular biologic methodologies have opened a new window into the biology and epidemiology of Pneumocystis. Advances include an improved taxonomic classification, identification of an extremely reduced genome and concomitant inability to metabolize and grow independent of the host lungs, insights into its transmission mode, recognition of its widespread colonization in both immunocompetent and immunodeficient hosts, and utilization of strain variation to study drug resistance, epidemiology, and outbreaks of infection among transplant patients. This review summarizes these advances and also identifies some major questions and challenges that need to be addressed to better understand Pneumocystis biology and its relevance to clinical care. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Horizontal transfer of BovB and L1 retrotransposons in eukaryotes.

Transposable elements (TEs) are mobile DNA sequences, colloquially known as jumping genes because of their ability to replicate to new genomic locations. TEs can jump between organisms or species when given a vector of transfer, such as a tick or virus, in a process known as horizontal transfer. Here, we propose that LINE-1 (L1) and Bovine-B (BovB), the two most abundant TE families in mammals, were initially introduced as foreign DNA via ancient horizontal transfer events.Using analyses of 759 plant, fungal and animal genomes, we identify multiple possible L1 horizontal transfer events in eukaryotic species, primarily involving Tx-like L1s in marine eukaryotes. We also extend the BovB paradigm by increasing the number of estimated transfer events compared to previous studies, finding new parasite vectors of transfer such as bed bug, leech and locust, and BovB occurrences in new lineages such as bat and frog. Given that these transposable elements have colonised more than half of the genome sequence in today’s mammals, our results support a role for horizontal transfer in causing long-term genomic change in new host organisms.We describe extensive horizontal transfer of BovB retrotransposons and provide the first evidence that L1 elements can also undergo horizontal transfer. With the advancement of genome sequencing technologies and bioinformatics tools, we anticipate our study to be a valuable resource for inferring horizontal transfer from large-scale genomic data.


September 22, 2019  |  

Genomic comparison of highly virulent, moderately virulent, and avirulent strains from a genetically closely-related MRSA ST239 sub-lineage provides insights into pathogenesis.

The genomic comparison of virulent (TW20), moderately virulent (CMRSA6/CMRSA3), and avirulent (M92) strains from a genetically closely-related MRSA ST239 sub-lineage revealed striking similarities in their genomes and antibiotic resistance profiles, despite differences in virulence and pathogenicity. The main differences were in the spa gene (coding for staphylococcal protein A), lpl genes (coding for lipoprotein-like membrane proteins), cta genes (genes involved in heme synthesis), and the dfrG gene (coding for a trimethoprim-resistant dihydrofolate reductase), as well as variations in the presence or content of some prophages and plasmids, which could explain the virulence differences of these strains. TW20 was positive for all genetic traits tested, compared to CMRSA6, CMRSA3, and M92. The major components differing among these strains included spa and lpl with TW20 carrying both whereas CMRSA6/CMRSA3 carry spa identical to TW20 but have a disrupted lpl. M92 is devoid of both these traits. Considering the role played by these components in innate immunity and virulence, it is predicted that since TW20 has both the components intact and functional, these traits contribute to its pathogenesis. However, CMRSA6/CMRSA3 are missing one of these components, hence their intermediately virulent nature. On the contrary, M92 is completely devoid of both the spa and lpl genes and is avirulent. Mobile genetic elements play a potential role in virulence. TW20 carries three prophages (?Sa6, ?Sa3, and ?SPß-like), a pathogenicity island and two plasmids. CMRSA6, CMRSA3, and M92 contain variations in one or more of these components. The virulence associated genes in these components include staphylokinase, entertoxins, antibiotic/antiseptic/heavy metal resistance and bacterial persistence. Additionally, there are many hypothetical proteins (present with variations among strains) with unknown function in these mobile elements which could be making an important contribution in the virulence of these strains. The above mentioned repertoire of virulence components in TW20 likely contributes to its increased virulence, while the absence and/or modification of one or more of these components in CMRSA6/CMRSA3 and M92 likely affects the virulence of the strains.


September 22, 2019  |  

Conservation genomics of the declining North American bumblebee Bombus terricola reveals inbreeding and selection on immune genes.

The yellow-banded bumblebee Bombus terricola was common in North America but has recently declined and is now on the IUCN Red List of threatened species. The causes of B. terricola’s decline are not well understood. Our objectives were to create a partial genome and then use this to estimate population data of conservation interest, and to determine whether genes showing signs of recent selection suggest a specific cause of decline. First, we generated a draft partial genome (contig set) for B. terricola, sequenced using Pacific Biosciences RS II at an average depth of 35×. Second, we sequenced the individual genomes of 22 bumblebee gynes from Ontario and Quebec using Illumina HiSeq 2500, each at an average depth of 20×, which were used to improve the PacBio genome calls and for population genetic analyses. The latter revealed that several samples had long runs of homozygosity, and individuals had high inbreeding coefficient F, consistent with low effective population size. Our data suggest that B. terricola’s effective population size has decreased orders of magnitude from pre-Holocene levels. We carried out tests of selection to identify genes that may have played a role in ameliorating environmental stressors underlying B. terricola’s decline. Several immune-related genes have signatures of recent positive selection, which is consistent with the pathogen-spillover hypothesis for B. terricola’s decline. The new B. terricola contig set can help solve the mystery of bumblebee decline by enabling functional genomics research to directly assess the health of pollinators and identify the stressors causing declines.


September 22, 2019  |  

Genomic analysis of Sparus aurata reveals the evolutionary dynamics of sex-biased genes in a sequential hermaphrodite fish

Sexual dimorphism is a fascinating subject in evolutionary biology and mostly results from sex-biased expression of genes, which have been shown to evolve faster in gonochoristic species. We report here genome and sex-specific transcriptome sequencing of Sparus aurata, a sequential hermaphrodite fish. Evolutionary comparative analysis reveals that sex-biased genes in S. aurata are similar in number and function, but evolved following strikingly divergent patterns compared with gonochoristic species, showing overall slower rates because of stronger functional constraints. Fast evolution is observed only for highly ovary-biased genes due to female-specific patterns of selection that are related to the peculiar reproduction mode of S. aurata, first maturing as male, then as female. To our knowledge, these findings represent the first genome-wide analysis on sex-biased loci in a hermaphrodite vertebrate species, demonstrating how having two sexes in the same individual profoundly affects the fate of a large set of evolutionarily relevant genes.


September 22, 2019  |  

The hpRNA/RNAi pathway is essential to resolve intragenomic conflict in the Drosophila male germline.

Intragenomic conflicts are fueled by rapidly evolving selfish genetic elements, which induce selective pressures to innovate opposing repressive mechanisms. This is patently manifest in sex-ratio (SR) meiotic drive systems, in which distorter and suppressor factors bias and restore equal transmission of X and Y sperm. Here, we reveal that multiple SR suppressors in Drosophila simulans (Nmy and Tmy) encode related hairpin RNAs (hpRNAs), which generate endo-siRNAs that repress the paralogous distorters Dox and MDox. All components in this drive network are recently evolved and largely testis restricted. To connect SR hpRNA function to the RNAi pathway, we generated D. simulans null mutants of Dcr-2 and AGO2. Strikingly, these core RNAi knockouts massively derepress Dox and MDox and are in fact completely male sterile and exhibit highly defective spermatogenesis. Altogether, our data reveal how the adaptive capacity of hpRNAs is critically deployed to restrict selfish gonadal genetic systems that can exterminate a species. Copyright © 2018 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Comparative genomics of Salmonella enterica serovar Montevideo reveals lineage-specific gene differences that may influence ecological niche association.

Salmonella enterica serovar Montevideo has been linked to recent foodborne illness outbreaks resulting from contamination of products such as fruits, vegetables, seeds and spices. Studies have shown that Montevideo also is frequently associated with healthy cattle and can be isolated from ground beef, yet human salmonellosis outbreaks of Montevideo associated with ground beef contamination are rare. This disparity fuelled our interest in characterizing the genomic differences between Montevideo strains isolated from healthy cattle and beef products, and those isolated from human patients and outbreak sources. To that end, we sequenced 13 Montevideo strains to completion, producing high-quality genome assemblies of isolates from human patients (n=8) or from healthy cattle at slaughter (n=5). Comparative analysis of sequence data from this study and publicly available sequences (n=72) shows that Montevideo falls into four previously established clades, differentially occupied by cattle and human strains. The results of these analyses reveal differences in metabolic islands, environmental adhesion determinants and virulence factors within each clade, and suggest explanations for the infrequent association between bovine isolates and human illnesses.


September 22, 2019  |  

Natural selection in bats with historical exposure to white-nose syndrome

Hibernation allows animals to survive periods of resource scarcity by reducing their energy expenditure through decreased metabolism. However, hibernators become susceptible to psychrophilic pathogens if they cannot mount an efficient immune response to infection. While Nearctic bats infected with white-nose syndrome (WNS) suffer high mortality, related Palearctic taxa are better able to survive the disease than their Nearctic counterparts. We hypothesised that WNS exerted historical selective pressure in Palearctic bats, resulting in genomic changes that promote infection tolerance.


September 22, 2019  |  

Prevalence and genomic structure of bacteriophage phi3 in human derived livestock-associated MRSA from 2000 to 2015.

Whereas the emergence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) clonal complex 398 (CC398) in animal husbandry and its transmission to humans are well documented, less is known about factors driving the epidemic spread of this zoonotic lineage within the human population. One factor could be the bacteriophage phi3, which is rarely detected in S. aureus isolates from animals but commonly found among isolates from humans, including those of the human-adapted methicillin-susceptible S. aureus (MSSA) CC398 clade. The proportion of phi3-carrying MRSA spa-CC011 isolates, which constitute presumptively LA-MRSA within the multilocus sequence type (MLST) clonal complex 398, was systematically assessed for a period of 16 years to investigate the role of phi3 in the adaptation process of LA-MRSA to the human host. For this purpose, 632 MRSA spa-CC011 isolates from patients of a university hospital located in a pig farming-dense area in Germany were analyzed. Livestock-associated acquisition of MRSA spa-CC011 was previously reported as having increased from 1.8% in 2000 to 29.4% in 2014 in MRSA-positive patients admitted to this hospital. However, in this study, the proportion of phi3-carrying isolates rose only from 1.1% (2000 to 2006) to 3.9% (2007 to 2015). Characterization of the phi3 genomes revealed 12 different phage types ranging in size from 40,712 kb up to 44,003 kb, with four hitherto unknown integration sites (genes or intergenic regions) and several modified bacterial attachment (attB) sites. In contrast to the MSSA CC398 clade, phi3 acquisition seems to be no major driver for the readaptation of MRSA spa-CC011 to the human host. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Hepacivirus A infection in horses defines distinct envelope hypervariable regions and elucidates potential roles of viral strain and adaptive immune status in determining envelope diversity and infection outcome.

Hepacivirus A (also known as nonprimate hepacivirus and equine hepacivirus) is a hepatotropic virus that can cause both transient and persistent infections in horses. The evolution of intrahost viral populations (quasispecies) has not been studied in detail for hepacivirus A, and its roles in immune evasion and persistence are unknown. To address these knowledge gaps, we first evaluated the envelope gene (E1 and E2) diversity of two different hepacivirus A strains (WSU and CU) in longitudinal blood samples from experimentally infected adult horses, juvenile horses (foals), and foals with severe combined immunodeficiency (SCID). Persistent infection with the WSU strain was associated with significantly greater quasispecies diversity than that observed in horses who spontaneously cleared infection (P = 0.0002) or in SCID foals (P < 0.0001). In contrast, the CU strain was able to persist despite significantly lower (P < 0.0001) and relatively static envelope diversity. These findings indicate that envelope diversity is a poor predictor of hepacivirus A infection outcomes and could be dependent on strain-specific factors. Next, entropy analysis was performed on all E1/E2 genes entered into GenBank. This analysis defined three novel hypervariable regions (HVRs) in E2, at residues 391 to 402 (HVR1), 450 to 461 (HVR2), and 550 to 562 (HVR3). For the experimentally infected horses, entropy analysis focusing on the HVRs demonstrated that these regions were under increased selective pressure during persistent infection. Increased diversity in the HVRs was also temporally associated with seroconversion in some horses, suggesting that these regions may be targets of neutralizing antibody and may play a role in immune evasion.IMPORTANCE Hepacivirus C (hepatitis C virus) is estimated to infect 150 million people worldwide and is a leading cause of cirrhosis and hepatocellular carcinoma. In contrast, its closest relative, hepacivirus A, causes relatively mild disease in horses and is frequently cleared. The relationship between quasispecies evolution and infection outcome has not been explored for hepacivirus A. To address this knowledge gap, we examined envelope gene diversity in horses with resolving and persistent infections. Interestingly, two strain-specific patterns of quasispecies diversity emerged. Persistence of the WSU strain was associated with increased quasispecies diversity and the accumulation of amino acid changes within three novel hypervariable regions following seroconversion. These findings provided evidence that envelope gene mutation is influenced by adaptive immune pressure and may contribute to hepacivirus persistence. However, the CU strain persisted despite relative evolutionary stasis, suggesting that some hepacivirus strains may use alternative mechanisms to persist in the host. Copyright © 2018 American Society for Microbiology.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.