Menu
July 7, 2019  |  

Whole-genome sequences of Burkholderia pseudomallei isolates exhibiting decreased meropenem susceptibility.

We report here paired isogenic Burkholderia pseudomallei genomes obtained from three patients receiving intravenous meropenem for melioidosis treatment, with post-meropenem isolates developing decreased susceptibility. Two genomes were finished, and four were drafted to improved high-quality standard. These genomes will be used to identify meropenem resistance mechanisms in B. pseudomallei. Copyright © 2017 Price et al.


July 7, 2019  |  

Emergence and evolution of multidrug-resistant Klebsiella pneumoniae with both blaKPC and blaCTX-M integrated in the chromosome.

The extended-spectrum-ß-lactamase (ESBL)- and Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae represent serious and urgent threats to public health. In a retrospective study of multidrug-resistant K. pneumoniae, we identified three clinical isolates, CN1, CR14, and NY9, carrying both blaCTX-M and blaKPC genes. The complete genomes of these three K. pneumoniae isolates were de novo assembled by using both short- and long-read whole-genome sequencing. In CR14 and NY9, blaCTX-M and blaKPC were carried on two different plasmids. In contrast, CN1 had one copy of blaKPC-2 and three copies of blaCTX-M-15 integrated in the chromosome, for which the blaCTX-M-15 genes were linked to an insertion sequence, ISEcp1, whereas the blaKPC-2 gene was in the context of a Tn4401a transposition unit conjugated with a PsP3-like prophage. Intriguingly, downstream of the Tn4401a-blaKPC-2-prophage genomic island, CN1 also carried a clustered regularly interspaced short palindromic repeat (CRISPR)-cas array with four spacers targeting a variety of K. pneumoniae plasmids harboring antimicrobial resistance genes. Comparative genomic analysis revealed that there were two subtypes of type I-E CRISPR-cas in K. pneumoniae strains and suggested that the evolving CRISPR-cas, with its acquired novel spacer, induced the mobilization of antimicrobial resistance genes from plasmids into the chromosome. The integration and dissemination of multiple copies of blaCTX-M and blaKPC from plasmids to chromosome depicts the complex pandemic scenario of multidrug-resistant K. pneumoniae Additionally, the implications from this study also raise concerns for the application of a CRISPR-cas strategy against antimicrobial resistance. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Comparative genomics of Burkholderia multivorans, a ubiquitous pathogen with a highly conserved genomic structure.

The natural environment serves as a reservoir of opportunistic pathogens. A well-established method for studying the epidemiology of such opportunists is multilocus sequence typing, which in many cases has defined strains predisposed to causing infection. Burkholderia multivorans is an important pathogen in people with cystic fibrosis (CF) and its epidemiology suggests that strains are acquired from non-human sources such as the natural environment. This raises the central question of whether the isolation source (CF or environment) or the multilocus sequence type (ST) of B. multivorans better predicts their genomic content and functionality. We identified four pairs of B. multivorans isolates, representing distinct STs and consisting of one CF and one environmental isolate each. All genomes were sequenced using the PacBio SMRT sequencing technology, which resulted in eight high-quality B. multivorans genome assemblies. The present study demonstrated that the genomic structure of the examined B. multivorans STs is highly conserved and that the B. multivorans genomic lineages are defined by their ST. Orthologous protein families were not uniformly distributed among chromosomes, with core orthologs being enriched on the primary chromosome and ST-specific orthologs being enriched on the second and third chromosome. The ST-specific orthologs were enriched in genes involved in defense mechanisms and secondary metabolism, corroborating the strain-specificity of these virulence characteristics. Finally, the same B. multivorans genomic lineages occur in both CF and environmental samples and on different continents, demonstrating their ubiquity and evolutionary persistence.


July 7, 2019  |  

Generation of a collection of mutant tomato lines using pooled CRISPR libraries.

The high efficiency of clustered regularly interspaced short palindromic repeats (CRISPR)-mediated mutagenesis in plants enables the development of high-throughput mutagenesis strategies. By transforming pooled CRISPR libraries into tomato (Solanum lycopersicum), collections of mutant lines were generated with minimal transformation attempts and in a relatively short period of time. Identification of the targeted gene(s) was easily determined by sequencing the incorporated guide RNA(s) in the primary transgenic events. From a single transformation with a CRISPR library targeting the immunity-associated leucine-rich repeat subfamily XII genes, heritable mutations were recovered in 15 of the 54 genes targeted. To increase throughput, a second CRISPR library was made containing three guide RNAs per construct to target 18 putative transporter genes. This resulted in stable mutations in 15 of the 18 targeted genes, with some primary transgenic plants having as many as five mutated genes. Furthermore, the redundancy in this collection of plants allowed for the association of aberrant T0 phenotypes with the underlying targeted genes. Plants with mutations in a homolog of an Arabidopsis (Arabidopsis thaliana) boron efflux transporter displayed boron deficiency phenotypes. The strategy described here provides a technically simple yet high-throughput approach for generating a collection of lines with targeted mutations and should be applicable to any plant transformation system.© 2017 American Society of Plant Biologists. All Rights Reserved.


July 7, 2019  |  

Xanthomonas adaptation to common bean is associated with horizontal transfers of genes encoding TAL effectors.

Common bacterial blight is a devastating bacterial disease of common bean (Phaseolus vulgaris) caused by Xanthomonas citri pv. fuscans and Xanthomonas phaseoli pv. phaseoli. These phylogenetically distant strains are able to cause similar symptoms on common bean, suggesting that they have acquired common genetic determinants of adaptation to common bean. Transcription Activator-Like (TAL) effectors are bacterial type III effectors that are able to induce the expression of host genes to promote infection or resistance. Their capacity to bind to a specific host DNA sequence suggests that they are potential candidates for host adaption.To study the diversity of tal genes from Xanthomonas strains responsible for common bacterial blight of bean, whole genome sequences of 17 strains representing the diversity of X. citri pv. fuscans and X. phaseoli pv. phaseoli were obtained by single molecule real time sequencing. Analysis of these genomes revealed the existence of four tal genes named tal23A, tal20F, tal18G and tal18H, respectively. While tal20F and tal18G were chromosomic, tal23A and tal18H were carried on plasmids and shared between phylogenetically distant strains, therefore suggesting recent horizontal transfers of these genes between X. citri pv. fuscans and X. phaseoli pv. phaseoli strains. Strikingly, tal23A was present in all strains studied, suggesting that it played an important role in adaptation to common bean. In silico predictions of TAL effectors targets in the common bean genome suggested that TAL effectors shared by X. citri pv. fuscans and X. phaseoli pv. phaseoli strains target the promoters of genes of similar functions. This could be a trace of convergent evolution among TAL effectors from different phylogenetic groups, and comforts the hypothesis that TAL effectors have been implied in the adaptation to common bean.Altogether, our results favour a model where plasmidic TAL effectors are able to contribute to host adaptation by being horizontally transferred between distant lineages.


July 7, 2019  |  

Bow-tie signaling in c-di-GMP: Machine learning in a simple biochemical network.

Bacteria of many species rely on a simple molecule, the intracellular secondary messenger c-di-GMP (Bis-(3′-5′)-cyclic dimeric guanosine monophosphate), to make a vital choice: whether to stay in one place and form a biofilm, or to leave it in search of better conditions. The c-di-GMP network has a bow-tie shaped architecture that integrates many signals from the outside world-the input stimuli-into intracellular c-di-GMP levels that then regulate genes for biofilm formation or for swarming motility-the output phenotypes. How does the ‘uninformed’ process of evolution produce a network with the right input/output association and enable bacteria to make the right choice? Inspired by new data from 28 clinical isolates of Pseudomonas aeruginosa and strains evolved in laboratory experiments we propose a mathematical model where the c-di-GMP network is analogous to a machine learning classifier. The analogy immediately suggests a mechanism for learning through evolution: adaptation though incremental changes in c-di-GMP network proteins acquires knowledge from past experiences and enables bacteria to use it to direct future behaviors. Our model clarifies the elusive function of the ubiquitous c-di-GMP network, a key regulator of bacterial social traits associated with virulence. More broadly, the link between evolution and machine learning can help explain how natural selection across fluctuating environments produces networks that enable living organisms to make sophisticated decisions.


July 7, 2019  |  

Parallel evolution of two clades of a major Atlantic endemic Vibrio parahaemolyticus pathogen lineage by independent acquisition of related pathogenicity islands.

Shellfish-transmitted Vibrio parahaemolyticus infections have recently increased from locations with historically low disease incidence, such as the Northeast United States (US). This change coincided with a bacterial population shift towards human pathogenic variants occurring in part through the introduction of several Pacific native lineages (ST36, ST43 and ST636) to near-shore areas off the Atlantic coast of the Northeast US. Concomitantly, ST631 emerged as a major endemic pathogen. Phylogenetic trees of clinical and environmental isolates indicated that two clades diverged from a common ST631 ancestor, and in each of these clades, a human pathogenic variant evolved independently through acquisition of distinct Vibrio pathogenicity islands (VPaI). These VPaI differ from each other and bear little resemblance to hemolysin-containing VPaI from isolates of the pandemic clonal complex. Clade I ST631 isolates either harbored no hemolysins, or contained a chromosome I-inserted island we call VPaIß that encodes a type three secretion system (T3SS2ß) typical of Trh hemolysin-producers. The more clinically prevalent and clonal ST631 clade II had an island we call VPaI? that encodes both tdh and trh and that was inserted in chromosome II. VPaI? was derived from VPaIß but with some additional acquired elements in common with VPaI carried by pandemic isolates, exemplifying the mosaic nature of pathogenicity islands. Genomics comparisons and amplicon assays identified VPaI?-type islands containing tdh inserted adjacent to the ure cluster in the three introduced Pacific and most other emergent lineages. that collectively cause 67% of Northeast US infections as of 2016.IMPORTANCE The availability of three different hemolysin genotypes in the ST631 lineage provided a unique opportunity to employ genome comparisons to further our understanding of the processes underlying pathogen evolution. The fact that two different pathogenic clades arose in parallel from the same potentially benign lineage by independent VPaI acquisition is surprising considering the historically low prevalence of community members harboring VPaI in waters along the Northeast US coast that could serve as the source of this material. This illustrates a possible predisposition of some lineages to not only acquire foreign DNA but also to become human pathogens. Whereas the underlying cause for the expansion of V. parahaemolyticus lineages harboring VPaI? along the US Atlantic coast and spread of this element to multiple lineages that underlies disease emergence is not known, this work underscores the need to define the environment factors that favor bacteria harboring VPaI in locations of emergent disease. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

First complete genome sequences of Xanthomonas citri pv. vignicola strains CFBP7111, CFBP7112, and CFBP7113 obtained using long-read technology

Xanthomonas citri pv. vignicola strains cause bacterial blight of the legume crop cowpea. We report whole-genome sequences of three X. citri pv. vignicola strains obtained using PacBio single-molecule real-time sequencing. Such genomic data provide new information on pathogenicity factors, such as transcription activator-like effectors. Copyright © 2017 Ruh et al.


July 7, 2019  |  

Genome architecture and evolution of a unichromosomal asexual nematode.

Asexual reproduction in animals, though rare, is the main or exclusive mode of reproduction in some long-lived lineages. The longevity of asexual clades may be correlated with the maintenance of heterozygosity by mechanisms that rearrange genomes and reduce recombination. Asexual species thus provide an opportunity to gain insight into the relationship between molecular changes, genome architecture, and cellular processes. Here we report the genome sequence of the parthenogenetic nematode Diploscapter pachys with only one chromosome pair. We show that this unichromosomal architecture is shared by a long-lived clade of asexual nematodes closely related to the genetic model organism Caenorhabditis elegans. Analysis of the genome assembly reveals that the unitary chromosome arose through fusion of six ancestral chromosomes, with extensive rearrangement among neighboring regions. Typical nematode telomeres and telomeric protection-encoding genes are lacking. Most regions show significant heterozygosity; homozygosity is largely concentrated to one region and attributed to gene conversion. Cell-biological and molecular evidence is consistent with the absence of key features of meiosis I, including synapsis and recombination. We propose that D. pachys preserves heterozygosity and produces diploid embryos without fertilization through a truncated meiosis. As a prelude to functional studies, we demonstrate that D. pachys is amenable to experimental manipulation by RNA interference. Copyright © 2017 Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods.

Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOS(YA), replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.


July 7, 2019  |  

Copy number variation probes inform diverse applications

A major contributor to inter-individual genomic variability is copy number variation (CNV). CNVs change the diploid status of the DNA, involve one or multiple genes, and may disrupt coding regions, affect regulatory elements, or change gene dosage. While some of these changes may have no phenotypic consequences, others underlie disease, explain evolutionary processes, or impact the response to medication.


July 7, 2019  |  

Institutional profile: translational pharmacogenomics at the Icahn School of Medicine at Mount Sinai.

For almost 50 years, the Icahn School of Medicine at Mount Sinai has continually invested in genetics and genomics, facilitating a healthy ecosystem that provides widespread support for the ongoing programs in translational pharmacogenomics. These programs can be broadly cataloged into discovery, education, clinical implementation and testing, which are collaboratively accomplished by multiple departments, institutes, laboratories, companies and colleagues. Focus areas have included drug response association studies and allele discovery, multiethnic pharmacogenomics, personalized genotyping and survey-based education programs, pre-emptive clinical testing implementation and novel assay development. This overview summarizes the current state of translational pharmacogenomics at Mount Sinai, including a future outlook on the forthcoming expansions in overall support, research and clinical programs, genomic technology infrastructure and the participating faculty.


July 7, 2019  |  

Rapid evolution of citrate utilization by Escherichia coli by direct selection requires citT and dctA.

The isolation of aerobic citrate-utilizing Escherichia coli (Cit(+)) in long-term evolution experiments (LTEE) has been termed a rare, innovative, presumptive speciation event. We hypothesized that direct selection would rapidly yield the same class of E. coli Cit(+) mutants and follow the same genetic trajectory: potentiation, actualization, and refinement. This hypothesis was tested with wild-type E. coli strain B and with K-12 and three K-12 derivatives: an E. coli ?rpoS::kan mutant (impaired for stationary-phase survival), an E. coli ?citT::kan mutant (deleted for the anaerobic citrate/succinate antiporter), and an E. coli ?dctA::kan mutant (deleted for the aerobic succinate transporter). E. coli underwent adaptation to aerobic citrate metabolism that was readily and repeatedly achieved using minimal medium supplemented with citrate (M9C), M9C with 0.005% glycerol, or M9C with 0.0025% glucose. Forty-six independent E. coli Cit(+) mutants were isolated from all E. coli derivatives except the E. coli ?citT::kan mutant. Potentiation/actualization mutations occurred within as few as 12 generations, and refinement mutations occurred within 100 generations. Citrate utilization was confirmed using Simmons, Christensen, and LeMaster Richards citrate media and quantified by mass spectrometry. E. coli Cit(+) mutants grew in clumps and in long incompletely divided chains, a phenotype that was reversible in rich media. Genomic DNA sequencing of four E. coli Cit(+) mutants revealed the required sequence of mutational events leading to a refined Cit(+) mutant. These events showed amplified citT and dctA loci followed by DNA rearrangements consistent with promoter capture events for citT. These mutations were equivalent to the amplification and promoter capture CitT-activating mutations identified in the LTEE.IMPORTANCE E. coli cannot use citrate aerobically. Long-term evolution experiments (LTEE) performed by Blount et al. (Z. D. Blount, J. E. Barrick, C. J. Davidson, and R. E. Lenski, Nature 489:513-518, 2012, http://dx.doi.org/10.1038/nature11514 ) found a single aerobic, citrate-utilizing E. coli strain after 33,000 generations (15 years). This was interpreted as a speciation event. Here we show why it probably was not a speciation event. Using similar media, 46 independent citrate-utilizing mutants were isolated in as few as 12 to 100 generations. Genomic DNA sequencing revealed an amplification of the citT and dctA loci and DNA rearrangements to capture a promoter to express CitT, aerobically. These are members of the same class of mutations identified by the LTEE. We conclude that the rarity of the LTEE mutant was an artifact of the experimental conditions and not a unique evolutionary event. No new genetic information (novel gene function) evolved. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.