Menu
June 1, 2021  |  

Genomic DNA sequences of HLA class I alleles generated using multiplexed barcodes and SMRT DNA Sequencing technology.

Allelic-level resolution HLA typing is known to improve survival prognoses post Unrelated Donor (UD) Haematopoietic Stem Cell Transplantation (HSCT). Currently, many commonly used HLA typing methodologies are limited either due to the fact that ambiguity cannot be resolved or that they are not amenable to high-throughput laboratories. Pacific Biosciences’ Single Molecule Real-Time (SMRT) DNA sequencing technology enables sequencing of single molecules in isolation and has read-length capabilities to enable whole gene sequencing for HLA. DNA barcode technology labels samples with unique identifiers that can be traced throughout the sequencing process. The use of DNA barcodes means that multiple samples can be sequenced in a single experiment but data can still be attributed to the correct sample. Here we describe the results of experiments that use DNA barcodes to facilitate sequencing of multiple samples for full-length HLA class I genes (known as multiplexing).


June 1, 2021  |  

The MHC Diversity in Africa Project (MDAP) pilot – 125 African high resolution HLA types from 5 populations

The major histocompatibility complex (MHC), or human leukocyte antigen (HLA) in humans, is a highly diverse gene family with a key role in immune response to disease; and has been implicated in auto-immune disease, cancer, infectious disease susceptibility, and vaccine response. It has clinical importance in the field of solid organ and bone marrow transplantation, where donors and recipient matching of HLA types is key to transplanted organ outcomes. The Sanger based typing (SBT) methods currently used in clinical practice do not capture the full diversity across this region, and require specific reference sequences to deconvolute ambiguity in HLA types. However, reference databases are based largely on European populations, and the full extent of diversity in Africa remains poorly understood. Here, we present the first systematic characterisation of HLA diversity within Africa in the pilot phase of the MHC Diversity in Africa Project, together with an evaluation of methods to carry out scalable cost-effective, as well as reliable, typing of this region in African populations.To sample a geographically representative panel of African populations we obtained 125 samples, 25 each from the Zulu (South Africa), Igbo (Nigeria), Kalenjin (Kenya), Moroccan and Ashanti (Ghana) groups. For methods validation we included two controls from the International Histocompatibility Working Group (IHWG) collection with known typing information. Sanger typing and Illumina HiSeq X sequencing of these samples indicated potentially novel Class I and Class II alleles; however, we found poor correlation between HiSeq X sequencing and SBT for both classes. Long Range PCR and high resolution PacBio RS-II typing of 4 of these samples identified 7 novel Class II alleles, highlighting the high levels of diversity in these populations, and the need for long read sequencing approaches to characterise this comprehensively. We have now expanded this approach to the entire pilot set of 125 samples. We present these confirmed types and discuss a workflow for scaling this to 5000 individuals across Africa.The large number of new alleles identified in our pilot suggests the high level of African HLA diversity and the utility of high resolution methods. The MDAP project will provide a framework for accurate HLA typing, in addition to providing an invaluable resource for imputation in GWAS, boosting power to identify and resolve HLA disease associations.


June 1, 2021  |  

Multiplexing strategies for microbial whole genome sequencing using the Sequel System

For microbial sequencing on the PacBio Sequel System, the current yield per SMRT Cell is in excess relative to project requirements. Multiplexing offers a viable solution; greatly increasing throughput, efficiency, and reducing costs per genome. This approach is achieved by incorporating a unique barcode for each microbial sample into the SMRTbell adapters and using a streamlined library preparation process. To demonstrate performance,12 unique barcodes assigned to B. subtilis and sequenced on a single SMRT Cell. To further demonstrate the applicability of this method, we multiplexed the genomes of 16 strains of H. pylori. Each DNA was sheared to 10 kb, end-repaired and ligated with a barcoded adapter in a single-tube reaction. The barcoded samples were pooled in equimolar quantities and a single SMRTbell library was prepared. Successful de novo microbial assemblies were achieved from all multiplexes tested (12-, and 16-plex) using data generated from a single SMRTbell library, run on a single SMRT Cell 1M with the PacBio Sequel System, and analyzed with standard SMRT Analysis assembly methods. Here, we describe a protocol that facilitated the multiplexing up to 12-plex of microbial genomes in one SMRT Cell 1M on the Sequel System that produced near-complete microbial de novo assemblies of <10 contigs for genomes <5 Mb in size.


June 1, 2021  |  

Allelic specificity of immunoglobulin heavy chain (IGH@) translocation in B-cell acute lymphoblastic leukemia (B-ALL) unveiled by long-read sequencing

Oncogenic fusion of IGH-DUX4 has recently been reported as a hallmark that defines a B-ALL subtype present in up to 7% of adolescents and young adults B-ALL. The translocation of DUX4 into IGH results in aberrant activation of DUX4 by hijacking the intronic IGH enhancer (Eµ). How IGH-DUX4 translocation interplays with IGH allelic exclusion was never been explored. We investigated this in Nalm6 B-ALL cell line, using long-read (PacBio Iso-Seq method and 10X Chromium WGS), short-read (Illumina total stranded RNA and WGS), epigenome (H3K27ac ChIP-seq, ATAC-seq) and 3-D genome (Hi-C, H3K27ac HiChIP, Capture-C).


June 1, 2021  |  

Single chromosomal genome assemblies on the Sequel System with Circulomics high molecular weight DNA extraction for microbes

Background: The Nanobind technology from Circulomics provides an elegant HMW DNA extraction solution for genome sequencing of Gram-positive and -negative microbes. Nanobind is a nanostructured magnetic disk that can be used for rapid extraction of high molecular weight (HMW) DNA from diverse sample types including cultured cells, blood, plant nuclei, and bacteria. Processing can be completed in <1 hour for most sample types and can be performed manually or automated with common instruments. Methods:We have validated several critical steps for generating high-quality microbial genome assemblies in a streamlined microbial multiplexing workflow. This new workflow enables high-volume, cost-effective sequencing of up to 16 microbes totaling 30 Mb in genome size on a single SMRT Cell 1M using a target shear size of 10 kb. We also evaluated this method on a pool of four “class 3” microbes that contain >7 kb repeats. Fragment size was increased to ~14 kb, with some fragments >30 kb. Results: Here we present a demonstration of these capabilities using isolates relevant to high-throughput sequencing applications, including common foodborne pathogens (Shigella, Listeria, Salmonella), and species often seen in hospital settings (Klebsiella, Staphylococcus). For nearly all microbes, including difficult-to-assemble class III microbes, we achieved complete de novo microbial assemblies of =5 chromosomal contigs with minimum quality scores of 40 (99.99% accuracy) using data from multiplexed SMRTbell libraries. Each library was sequenced on a single SMRT Cell 1M with the PacBio Sequel System and analyzed with streamlined SMRT Analysis assembly methods. Conclusions: We achieved high-quality, closed microbial genomes using a combination of Circulomics Nanobind extraction and PacBio SMRT Sequencing, along with a newly streamlined workflow that includes automated demultiplexing and push-button assembly.


June 1, 2021  |  

Improving the reference with a diversity panel of sequence-resolved structural variation

Although the accuracy of the human reference genome is critical for basic and clinical research, structural variants (SVs) have been difficult to assess because data capable of resolving them have been limited. To address potential bias, we sequenced a diversity panel of nine human genomes to high depth using long-read, single-molecule, real-time sequencing data. Systematically identifying and merging SVs =50 bp in length for these nine and one public genome yielded 83,909 sequence-resolved insertions, deletions, and inversions. Among these, 2,839 (2.0 Mbp) are shared among all discovery genomes with an additional 13,349 (6.9 Mbp) present in the majority of humans, indicating minor alleles or errors in the reference, which is partially explained by an enrichment for GC-content and repetitive DNA. Genotyping 83% of these in 290 additional genomes confirms that at least one allele of the most common SVs in unique euchromatin are now sequence-resolved. We observe a 9-fold increase within 5 Mbp of chromosome telomeric ends and correlation with de novo single-nucleotide variant mutations showing that such variation is nonrandomly distributed defining potential hotspots of mutation. We identify SVs affecting coding and noncoding regulatory loci improving annotation and interpretation of functional variation. To illustrate the utility of sequence-resolved SVs in resequencing experiments, we mapped 30 diverse high-coverage Illumina-sequenced samples to GRCh38 with and without contigs containing SV insertions as alternate sequences, and we found these additional sequences recover 6.4% of unmapped reads. For reads mapped within the SV insertion, 25.7% have a better mapping quality, and 18.7% improved by 1,000-fold or more. We reveal 72,964 occurrences of 15,814 unique variants that were not discoverable with the reference sequence alone, and we note that 7% of the insertions contain an SV in at least one sample indicating that there are additional alleles in the population that remain to be discovered. These data provide the framework to construct a canonical human reference and a resource for developing advanced representations capable of capturing allelic diversity. We present a summary of our findings and discuss ideas for revealing variation that was once difficult to ascertain.


February 5, 2021  |  

AGBT 2015 Highlights: Customer interviews day 1

PacBio customers discuss their applications of PacBio SMRT Sequencing and long reads, including Lemuel Racacho (Children’s Hospital of Eastern Ontario Research Institute), Matthew Blow (JGI), Yuta Suzuki (U. of Tokyo),…


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.