Menu
September 22, 2019  |  

A statistical method for observing personal diploid methylomes and transcriptomes with Single-Molecule Real-Time sequencing.

We address the problem of observing personal diploid methylomes, CpG methylome pairs of homologous chromosomes that are distinguishable with respect to phased heterozygous variants (PHVs), which is challenging due to scarcity of PHVs in personal genomes. Single molecule real-time (SMRT) sequencing is promising as it outputs long reads with CpG methylation information, but a serious concern is whether reliable PHVs are available in erroneous SMRT reads with an error rate of ~15%. To overcome the issue, we propose a statistical model that reduces the error rate of phasing CpG site to 1%, thereby calling CpG hypomethylation in each haplotype with >90% precision and sensitivity. Using our statistical model, we examined GNAS complex locus known for a combination of maternally, paternally, or biallelically expressed isoforms, and observed allele-specific methylation pattern almost perfectly reflecting their respective allele-specific expression status, demonstrating the merit of elucidating comprehensive personal diploid methylomes and transcriptomes.


September 22, 2019  |  

Extraordinary genome instability and widespread chromosome rearrangements during vegetative growth

The haploid genome of the pathogenic fungus Zymoseptoria tritici is contained on “core” and “accessory” chromosomes. While 13 core chromosomes are found in all strains, as many as eight accessory chromosomes show presence/absence variation and rearrangements among field isolates. The factors influencing these presence/absence polymorphisms are so far unknown. We investigated chromosome stability using experimental evolution, karyotyping, and genome sequencing. We report extremely high and variable rates of accessory chromosome loss during mitotic propagation in vitro and in planta Spontaneous chromosome loss was observed in 2 to >50% of cells during 4 weeks of incubation. Similar rates of chromosome loss in the closely related Zymoseptoria ardabiliae suggest that this extreme chromosome dynamic is a conserved phenomenon in the genus. Elevating the incubation temperature greatly increases instability of accessory and even core chromosomes, causing severe rearrangements involving telomere fusion and chromosome breakage. Chromosome losses do not affect the fitness of Zymoseptoria tritici in vitro, but some lead to increased virulence, suggesting an adaptive role of this extraordinary chromosome instability. Copyright © 2018 by the Genetics Society of America.


September 22, 2019  |  

The genome of tapeworm Taenia multiceps sheds light on understanding parasitic mechanism and control of coenurosis disease.

Coenurosis, caused by the larval coenurus of the tapeworm Taenia multiceps, is a fatal central nervous system disease in both sheep and humans. Though treatment and prevention options are available, the control of coenurosis still faces presents great challenges. Here, we present a high-quality genome sequence of T. multiceps in which 240 Mb (96%) of the genome has been successfully assembled using Pacbio single-molecule real-time (SMRT) and Hi-C data with a N50 length of 44.8 Mb. In total, 49.5 Mb (20.6%) repeat sequences and 13, 013 gene models were identified. We found that Taenia spp. have an expansion of transposable elements and recent small-scale gene duplications following the divergence of Taenia from Echinococcus, but not in Echinococcus genomes, and the genes underlying environmental adaptability and dosage effect tend to be over-retained in the T. multiceps genome. Moreover, we identified several genes encoding proteins involved in proglottid formation and interactions with the host central nervous system, which may contribute to the adaption of T. multiceps to its parasitic life style. Our study not only provides insights into the biology and evolution of T. multiceps, but also identifies a set of species-specific gene targets for developing novel treatment and control tools for coenurosis.


September 22, 2019  |  

Repeat elements organise 3D genome structure and mediate transcription in the filamentous fungus Epichloë festucae.

Structural features of genomes, including the three-dimensional arrangement of DNA in the nucleus, are increasingly seen as key contributors to the regulation of gene expression. However, studies on how genome structure and nuclear organisation influence transcription have so far been limited to a handful of model species. This narrow focus limits our ability to draw general conclusions about the ways in which three-dimensional structures are encoded, and to integrate information from three-dimensional data to address a broader gamut of biological questions. Here, we generate a complete and gapless genome sequence for the filamentous fungus, Epichloë festucae. We use Hi-C data to examine the three-dimensional organisation of the genome, and RNA-seq data to investigate how Epichloë genome structure contributes to the suite of transcriptional changes needed to maintain symbiotic relationships with the grass host. Our results reveal a genome in which very repeat-rich blocks of DNA with discrete boundaries are interspersed by gene-rich sequences that are almost repeat-free. In contrast to other species reported to date, the three-dimensional structure of the genome is anchored by these repeat blocks, which act to isolate transcription in neighbouring gene-rich regions. Genes that are differentially expressed in planta are enriched near the boundaries of these repeat-rich blocks, suggesting that their three-dimensional orientation partly encodes and regulates the symbiotic relationship formed by this organism.


September 22, 2019  |  

A complete Cannabis chromosome assembly and adaptive admixture for elevated cannabidiol (CBD) content

Cannabis has been cultivated for millennia with distinct cultivars providing either fiber and grain or tetrahydrocannabinol. Recent demand for cannabidiol rather than tetrahydrocannabinol has favored the breeding of admixed cultivars with extremely high cannabidiol content. Despite several draft Cannabis genomes, the genomic structure of cannabinoid synthase loci has remained elusive. A genetic map derived from a tetrahydrocannabinol/cannabidiol segregating population and a complete chromosome assembly from a high-cannabidiol cultivar together resolve the linkage of cannabidiolic and tetrahydrocannabinolic acid synthase gene clusters which are associated with transposable elements. High-cannabidiol cultivars appear to have been generated by integrating hemp-type cannabidiolic acid synthase gene clusters into a background of marijuana-type cannabis. Quantitative trait locus mapping suggests that overall drug potency, however, is associated with other genomic regions needing additional study.


September 22, 2019  |  

The genomic architecture and molecular evolution of ant odorant receptors.

The massive expansions of odorant receptor (OR) genes in ant genomes are notable examples of rapid genome evolution and adaptive gene duplication. However, the molecular mechanisms leading to gene family expansion remain poorly understood, partly because available ant genomes are fragmentary. Here, we present a highly contiguous, chromosome-level assembly of the clonal raider ant genome, revealing the largest known OR repertoire in an insect. While most ant ORs originate via local tandem duplication, we also observe several cases of dispersed duplication followed by tandem duplication in the most rapidly evolving OR clades. We found that areas of unusually high transposable element density (TE islands) were depauperate in ORs in the clonal raider ant, and found no evidence for retrotransposition of ORs. However, OR loci were enriched for transposons relative to the genome as a whole, potentially facilitating tandem duplication by unequal crossing over. We also found that ant OR genes are highly AT-rich compared to other genes. In contrast, in flies, OR genes are dispersed and largely isolated within the genome, and we find that fly ORs are not AT-rich. The genomic architecture and composition of ant ORs thus show convergence with the unrelated vertebrate ORs rather than the related fly ORs. This might be related to the greater gene numbers and/or potential similarities in gene regulation between ants and vertebrates as compared to flies.© 2018 McKenzie and Kronauer; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans.

Sweet osmanthus (Osmanthus fragrans) is a very popular ornamental tree species throughout Southeast Asia and USA particularly for its extremely fragrant aroma. We constructed a chromosome-level reference genome of O. fragrans to assist in studies of the evolution, genetic diversity, and molecular mechanism of aroma development. A total of over 118?Gb of polished reads was produced from HiSeq (45.1?Gb) and PacBio Sequel (73.35?Gb), giving 100× depth coverage for long reads. The combination of Illumina-short reads, PacBio-long reads, and Hi-C data produced the final chromosome quality genome of O. fragrans with a genome size of 727?Mb and a heterozygosity of 1.45 %. The genome was annotated using de novo and homology comparison and further refined with transcriptome data. The genome of O. fragrans was predicted to have?45,542 genes, of which 95.68 % were functionally annotated. Genome annotation found 49.35 % as the repetitive sequences, with long terminal repeats (LTR) being the richest (28.94 %). Genome evolution analysis indicated the evidence of whole-genome duplication 15 million years ago, which contributed to the current content of 45,242 genes. Metabolic analysis revealed that linalool, a monoterpene is the main aroma compound. Based on the genome and transcriptome, we further demonstrated the direct connection between terpene synthases (TPSs) and the rich aromatic molecules in O. fragrans. We identified three new flower-specific TPS genes, of which the expression coincided with the production of linalool. Our results suggest that the high number of TPS genes and the flower tissue- and stage-specific TPS genes expressions might drive the strong unique aroma production of O. fragrans.


September 22, 2019  |  

Improved reference genome for the domestic horse increases assembly contiguity and composition.

Recent advances in genomic sequencing technology and computational assembly methods have allowed scientists to improve reference genome assemblies in terms of contiguity and composition. EquCab2, a reference genome for the domestic horse, was released in 2007. Although of equal or better quality compared to other first-generation Sanger assemblies, it had many of the shortcomings common to them. In 2014, the equine genomics research community began a project to improve the reference sequence for the horse, building upon the solid foundation of EquCab2 and incorporating new short-read data, long-read data, and proximity ligation data. Here, we present EquCab3. The count of non-N bases in the incorporated chromosomes is improved from 2.33?Gb in EquCab2 to 2.41?Gb in EquCab3. Contiguity has also been improved nearly 40-fold with a contig N50 of 4.5?Mb and scaffold contiguity enhanced to where all but one of the 32 chromosomes is comprised of a single scaffold.


September 22, 2019  |  

Cryptocurrencies and Zero Mode Wave guides: An unclouded path to a more contiguous Cannabis sativa L. genome assembly

We describe the use ofa Decentralized Autonomous Organization (DAO) to crypto- fund the single molecule sequencing and publication ofa Type ll Cannabis plant. This resulted in the construction of the most contiguous Cannabis genome assembly to date. The combined use of the Dash cryptocurrency, DAOs, and Pacific Biosciences sequencing delivered a 1.03 Gb genome with a N50 of 665Kb in 77 days from funding to public upload. This represents a 230 fold improvement in the contiguity of the first cannabis assemblies in 2011 and a 4 fold improvement over all cannabis assemblies to date. 34Gb ofadditional sequencing pushed the assembly to a N50 of 3.8Mb. Hi-C data from Phase Genomics further scaffolded the assembly to 35 contigs at an N50 of 74Mb but requires additional curation. The genome is partially phased and larger than previously reported (2N : 1.33Gb). The CBCA, THCA and CBDA synthase gene clusters have been phased onto respective contigs demonstrating tandem repeat expansions.


September 22, 2019  |  

Desiccation Tolerance Evolved through Gene Duplication and Network Rewiring in Lindernia.

Although several resurrection plant genomes have been sequenced, the lack of suitable dehydration-sensitive outgroups has limited genomic insights into the origin of desiccation tolerance. Here, we utilized a comparative system of closely related desiccation-tolerant (Lindernia brevidens) and -sensitive (Lindernia subracemosa) species to identify gene- and pathway-level changes associated with the evolution of desiccation tolerance. The two high-quality Lindernia genomes we assembled are largely collinear, and over 90% of genes are conserved. L. brevidens and L. subracemosa have evidence of an ancient, shared whole-genome duplication event, and retained genes have neofunctionalized, with desiccation-specific expression in L. brevidens Tandem gene duplicates also are enriched in desiccation-associated functions, including a dramatic expansion of early light-induced proteins from 4 to 26 copies in L. brevidens A comparative differential gene coexpression analysis between L. brevidens and L. subracemosa supports extensive network rewiring across early dehydration, desiccation, and rehydration time courses. Many LATE EMBRYOGENESIS ABUNDANT genes show significantly higher expression in L. brevidens compared with their orthologs in L. subracemosa Coexpression modules uniquely upregulated during desiccation in L. brevidens are enriched with seed-specific and abscisic acid-associated cis-regulatory elements. These modules contain a wide array of seed-associated genes that have no expression in the desiccation-sensitive L. subracemosa Together, these findings suggest that desiccation tolerance evolved through a combination of gene duplications and network-level rewiring of existing seed desiccation pathways.© 2018 American Society of Plant Biologists. All rights reserved.


September 22, 2019  |  

How resurrection plants survive being hung out to dry.

Resurrection plants have the unique ability to survive extreme dehydration (desiccation), lying dormant for months or sometimes years until rehydration is possible. This formidable survival strategy has independently evolved several times across the land plant phylogeny, and several phylogenetically diverse resurrection plant genomes have been sequenced and assembled in an attempt to understand the causal genetic mechanisms. Large-scale comparisons across each of these phylogenetically distant resurrection plant genomes reveals that some conserved molecular signatures may underlie desiccation tolerance (Illing et al., 2005; Zhang and Bartels, 2018), but overall the genes, networks, and regulatory factors that underlie desiccation tolerance remain largely unknown.


September 22, 2019  |  

Approaches for surveying cosmic radiation damage in large populations of Arabidopsis thaliana seeds-Antarctic balloons and particle beams.

The Cosmic Ray Exposure Sequencing Science (CRESS) payload system is a proof of concept experiment to assess the genomic impact of space radiation on seeds. CRESS was designed as a secondary payload for the December 2016 high-altitude, high-latitude, and long-duration balloon flight carrying the Boron And Carbon Cosmic Rays in the Upper Stratosphere (BACCUS) experimental hardware. Investigation of the biological effects of Galactic Cosmic Radiation (GCR), particularly those of ions with High-Z and Energy (HZE), is of interest due to the genomic damage this type of radiation inflicts. The biological effects of upper-stratospheric mixed radiation above Antarctica (ANT) were sampled using Arabidopsis thaliana seeds and were compared to those resulting from a controlled simulation of GCR at Brookhaven National Laboratory (BNL) and to laboratory control seed. The payload developed for Antarctica exposure was broadly designed to 1U CubeSat specifications (10cmx10cmx10cm, =1.33kg), maintained 1 atm internal pressure, and carried an internal cargo of four seed trays (about 580,000 seeds) and twelve CR-39 Solid-State Nuclear Track Detectors (SSNTDs). The irradiated seeds were recovered, sterilized and grown on Petri plates for phenotypic screening. BNL and ANT M0 seeds showed significantly reduced germination rates and elevated somatic mutation rates when compared to non-irradiated controls, with the BNL mutation rate also being significantly higher than that of ANT. Genomic DNA from mutants of interest was evaluated with whole-genome sequencing using PacBio SMRT technology. Sequence data revealed the presence of an array of genome structural variants in the genomes of M0 and M1 mutant plants.


September 21, 2019  |  

PacBio assembly of a Plasmodium knowlesi genome sequence with Hi-C correction and manual annotation of the SICAvar gene family.

Plasmodium knowlesi has risen in importance as a zoonotic parasite that has been causing regular episodes of malaria throughout South East Asia. The P. knowlesi genome sequence generated in 2008 highlighted and confirmed many similarities and differences in Plasmodium species, including a global view of several multigene families, such as the large SICAvar multigene family encoding the variant antigens known as the schizont-infected cell agglutination proteins. However, repetitive DNA sequences are the bane of any genome project, and this and other Plasmodium genome projects have not been immune to the gaps, rearrangements and other pitfalls created by these genomic features. Today, long-read PacBio and chromatin conformation technologies are overcoming such obstacles. Here, based on the use of these technologies, we present a highly refined de novo P. knowlesi genome sequence of the Pk1(A+) clone. This sequence and annotation, referred to as the ‘MaHPIC Pk genome sequence’, includes manual annotation of the SICAvar gene family with 136 full-length members categorized as type I or II. This sequence provides a framework that will permit a better understanding of the SICAvar repertoire, selective pressures acting on this gene family and mechanisms of antigenic variation in this species and other pathogens.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.