Menu
September 22, 2019  |  

Complete genome sequence of Enterococcus durans Oregon-R-modENCODE strain BDGP3, a lactic acid bacterium found in the Drosophila melanogaster gut

Enterococcus durans Oregon-R-modENCODE strain BDGP3 was isolated from the Drosophila melanogaster gut for functional host-microbe interaction studies. The complete genome is composed of a single circular genome of 2,983,334 bp, with a G+C content of 38%, and a single plasmid of 5,594 bp. Copyright © 2017 Wan et al.


September 22, 2019  |  

Complete genome sequences of two human oral microbiome commensals, Streptococcus salivarius ATCC 25975 and S. salivarius ATCC 27945.

Streptococcus salivarius strains are significant contributors to the human oral microbiome. Some possess unique fimbriae that give them the ability to coaggregate and colonize particular oral structures. We present here the complete genomes of Streptococcus salivarius Lancefield K(-)/K(+) strains ATCC 25975 and ATCC 27945, which can and cannot, respectively, produce fimbriae. Copyright © 2017 Butler et al.


September 22, 2019  |  

Identification of a biosynthetic gene cluster for the polyene macrolactam sceliphrolactam in a Streptomyces strain isolated from mangrove sediment.

Streptomyces are a genus of Actinobacteria capable of producing structurally diverse natural products. Here we report the isolation and characterization of a biosynthetically talented Streptomyces (Streptomyces sp. SD85) from tropical mangrove sediments. Whole-genome sequencing revealed that Streptomyces sp. SD85 harbors at least 52 biosynthetic gene clusters (BGCs), which constitute 21.2% of the 8.6-Mb genome. When cultivated under lab conditions, Streptomyces sp. SD85 produces sceliphrolactam, a 26-membered polyene macrolactam with unknown biosynthetic origin. Genome mining yielded a putative sceliphrolactam BGC (sce) that encodes a type I modular polyketide synthase (PKS) system, several ß-amino acid starter biosynthetic enzymes, transporters, and transcriptional regulators. Using the CRISPR/Cas9-based gene knockout method, we demonstrated that the sce BGC is essential for sceliphrolactam biosynthesis. Unexpectedly, the PKS system encoded by sce is short of one module required for assembling the 26-membered macrolactam skeleton according to the collinearity rule. With experimental data disfavoring the involvement of a trans-PKS module, the biosynthesis of sceliphrolactam seems to be best rationalized by invoking a mechanism whereby the PKS system employs an iterative module to catalyze two successive chain extensions with different outcomes. The potential violation of the collinearity rule makes the mechanism distinct from those of other polyene macrolactams.


September 22, 2019  |  

Comparative mapping of the ASTRINGENCY locus controlling fruit astringency in hexaploid persimmon (Diospyros kaki Thunb.) with the diploid D. lotus reference genome

Persimmon (Diospyros kaki) is a tree crop species that originated in East Asia, consists mainly of hexaploid individuals (2n = 6x = 90) with some nonaploid individuals. One of the unique characteristics of persimmon is the continuous accumulation of proanthocyanidins (PAs) in its fruit until the middle of fruit development, resulting in a strong astringent taste even at commercial fruit maturity. Among persimmon cultivars, pollination-constant and non-astringent (PCNA) types cease PA accumulation in early fruit development and become non-astringent at commercial maturity. PCNA is an allelic trait to non-PCNA and is controlled by a single locus called the ASTRINGENCY (AST) locus. Previous segregation analyses indicated that the AST locus shows hexasomic inheritance; a recessive allele, ast, at this locus confers PCNA. Here, we report a shuttle mapping approach to delimit the AST locus region in the hexaploid persimmon genome by using D. lotus, a diploid relative of D. kaki, as a reference. A D. lotus F1 population of 333 individuals and 296 D. kaki siblings segregating for the PCNA trait were used to map the AST region using haplotype-specific markers covering the AST region. This indicated that the AST locus is syntenic to an approximately 915-kb region of the D. lotus genome. In this 915-kb region, we found several candidates for AST that were revealed from the fruit transcriptome of a population segregating for the PCNA trait. These results could provide important clues for the isolation of AST in hexaploid persimmon.


September 22, 2019  |  

Unusual genomic traits suggest Methylocystis bryophila S285 to be well adapted for life in peatlands.

The genus Methylocystis belongs to the class Alphaproteobacteria, the family Methylocystaceae, and encompasses aerobic methanotrophic bacteria with the serine pathway of carbon assimilation. All Methylocystis species are able to fix dinitrogen and several members of this genus are also capable of using acetate or ethanol in the absence of methane, which explains their wide distribution in various habitats. One additional trait that enables their survival in the environment is possession of two methane-oxidizing isozymes, the conventional particulate methane monooxygenase (pMMO) with low-affinity to substrate (pMMO1) and the high-affinity enzyme (pMMO2). Here, we report the finished genome sequence of Methylocystis bryophila S285, a pMMO2-possessing methanotroph from a Sphagnum-dominated wetland, and compare it to the genome of Methylocystis sp. strain SC2, which is the first methanotroph with confirmed high-affinity methane oxidation potential. The complete genome of Methylocystis bryophila S285 consists of a 4.53?Mb chromosome and one plasmid, 175?kb in size. The genome encodes two types of particulate MMO (pMMO1 and pMMO2), soluble MMO and, in addition, contains a pxmABC-like gene cluster similar to that present in some gammaproteobacterial methanotrophs. The full set of genes related to the serine pathway, the tricarboxylic acid cycle as well as the ethylmalonyl-CoA pathway is present. In contrast to most described methanotrophs including Methylocystis sp. strain SC2, two different types of nitrogenases, that is, molybdenum-iron and vanadium-iron types, are encoded in the genome of strain S285. This unique combination of genome-based traits makes Methylocystis bryophila well adapted to the fluctuation of carbon and nitrogen sources in wetlands.© The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


September 22, 2019  |  

Acquisition of resistance to carbapenem and macrolide-mediated quorum sensing inhibition by Pseudomonas aeruginosa via ICE Tn4371 6385

Pseudomonas aeruginosa can cause life-threatening infections in immunocompromised patients. The first-line agents to treat P. aeruginosa infections are carbapenems. However, the emergence of carbapenem-resistant P. aeruginosa strains greatly compromised the effec- tiveness of carbapenem treatment, which makes the surveillance on their spreading and transmission important. Here we characterized the full-length genomes of two carbapenem- resistant P. aeruginosa clinical isolates that are capable of producing New Delhi metallo-ß- lactamase-1 (NDM-1). We show that blaNDM-1 is carried by a novel integrative and conjugative element (ICE) ICETn43716385, which also carries the macrolide resistance gene msr(E) and the florfenicol resistance gene floR. By exogenously expressing msr(E) in P. aeruginosa laboratory strains, we show that Msr(E) can abolish azithromycin-mediated quorum sensing inhibition in vitro and anti-Pseudomonas effect in vivo. We conclude that ICEs are important in transmitting carbapenem resistance, and that anti-virulence treatment of P. aeruginosa infections using sub-inhibitory concentrations of macrolides can be challenged by horizontal gene transfer.


September 22, 2019  |  

Characterization of a novel multidrug resistance plasmid pSGB23 isolated from Salmonella enterica subspecies enterica serovar Saintpaul.

Salmonella enterica subspecies enterica serovar Saintpaul (S. Saintpaul) is an important gut pathogen which causes salmonellosis worldwide. Although intestinal salmonellosis is usually self-limiting, it can be life-threatening in children, the elderlies and immunocompromised patients. Appropriate antibiotic treatment is therefore required for these patients. However, the efficacy of many antibiotics on S. enterica infections has been greatly compromised due to spreading of multidrug resistance (MDR) plasmids, which poses serious threats on public health and needs to be closely monitored. In this study, we sequenced and fully characterized an S. enterica MDR plasmid pSGB23 isolated from chicken.Complete genome sequence analysis revealed that S. Saintpaul strain SGB23 harbored a 254 kb megaplasmid pSGB23, which carries 11 antibiotic resistance genes responsible for resistance to 9 classes of antibiotics and quaternary ammonium compounds that are commonly used to disinfect food processing facilities. Furthermore, we found that pSGB23 carries multiple conjugative systems, which allow it to spread into other Enterobacteriaceae spp. by self-conjugation. It also harbors multiple types of replicons and plasmid maintenance and addictive systems, which explains its broad host range and stable inheritance.We report here a novel MDR plasmid pSGB23 harboured by S. enterica. To our knowledge, it carried the greatest number of antibiotic resistance genes with the broadest range of resistance spectrum among S. enterica MDR plasmids identified so far. The isolation of pSGB23 from food sources is worrisome, while surveillance on its further spreading will be carried out based on the findings reported in this study.


September 22, 2019  |  

Reprogramming of the antimycin NRPS-PKS assembly lines inspired by gene evolution.

Reprogramming of the NRPS/PKS assembly line is an attractive method for the production of new bioactive molecules. However, it is usually hampered by the loss of intimate domain/module interactions required for the precise control of chain transfer and elongation reactions. In this study, we first establish heterologous expression systems of the unique antimycin-type cyclic depsipeptides: JBIR-06 (tri-lactone) and neoantimycin (tetra-lactone), and engineer their biosyntheses by taking advantage of bioinformatic analyses and evolutionary insights. As a result, we successfully accomplish three manipulations: (i) ring contraction of neoantimycin (from tetra-lactone to tri-lactone), (ii) ring expansion of JBIR-06 (from tri-lactone to tetra-lactone), and (iii) alkyl chain diversification of JBIR-06 by the incorporation of various alkylmalonyl-CoA extender units, to generate a set of unnatural derivatives in practical yields. This study presents a useful strategy for engineering NRPS-PKS module enzymes, based on nature’s diversification of the domain and module organizations.


September 22, 2019  |  

Coculture of marine Streptomyces sp. with Bacillus sp. produces a newpiperazic acid-bearing cyclic peptide.

Microbial culture conditions in the laboratory, which conventionally involve the cultivation of one strain in one culture vessel, are vastly different from natural microbial environments. Even though perfectly mimicking natural microbial interactions is virtually impossible, the cocultivation of multiple microbial strains is a reasonable strategy to induce the production of secondary metabolites, which enables the discovery of new bioactive natural products. Our coculture of marine Streptomyces and Bacillus strains isolated together from an intertidal mudflat led to discover a new metabolite, dentigerumycin E (1). Dentigerumycin E was determined to be a new cyclic hexapeptide incorporating three piperazic acids, N-OH-Thr, N-OH-Gly, ß-OH-Leu, and a pyran-bearing polyketide acyl chain mainly by analysis of its NMR and MS spectroscopic data. The putative PKS-NRPS biosynthetic gene cluster for dentigerumycin E was found in the Streptomyces strain, providing clear evidence that this cyclic peptide is produced by the Streptomyces strain. The absolute configuration of dentigerumycin E was established based on the advanced Marfey’s method, ROESY NMR correlations, and analysis of the amino acid sequence of the ketoreductase domain in the biosynthetic gene cluster. In biological evaluation of dentigerumycin E (1) and its chemical derivatives [2-N,16-N-deoxydenteigerumycin E (2) and dentigerumycin methyl ester (3)], only dentigerumycin E exhibited antiproliferative and antimetastatic activities against human cancer cells, indicating that N-OH and carboxylic acid functional groups are essential for the biological activity.


September 22, 2019  |  

A strain of an emerging Indian Xanthomonas oryzae pv. oryzae pathotype defeats the rice bacterial blight resistance gene xa13 without inducing a clade III SWEET gene and is nearly identical to a recent Thai isolate.

The rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae (Xoo) injects transcription activator-like effectors (TALEs) that bind and activate host “susceptibility” (S) genes important for disease. Clade III SWEET genes are major S genes for bacterial blight. The resistance genes xa5, which reduces TALE activity generally, and xa13, a SWEET11 allele not recognized by the cognate TALE, have been effectively deployed. However, strains that defeat both resistance genes individually were recently reported in India and Thailand. To gain insight into the mechanism(s), we completely sequenced the genome of one such strain from each country and examined the encoded TALEs. Strikingly, the two strains are clones, sharing nearly identical TALE repertoires, including a TALE known to activate SWEET11 strongly enough to be effective even when diminished by xa5. We next investigated SWEET gene induction by the Indian strain. The Indian strain induced no clade III SWEET in plants harboring xa13, indicating a pathogen adaptation that relieves dependence on these genes for susceptibility. The findings open a door to mechanistic understanding of the role SWEET genes play in susceptibility and illustrate the importance of complete genome sequence-based monitoring of Xoo populations in developing varieties with effective disease resistance.


September 22, 2019  |  

Discovery of the actinoplanic acid pathway in Streptomyces rapamycinicus reveals a genetically conserved synergism with rapamycin.

Actinobacteria possess a great wealth of pathways for production of bioactive compounds. Following advances in genome mining, dozens of natural product (NP) gene clusters are routinely found in each actinobacterial genome; however, the modus operandi of this large arsenal is poorly understood. During investigations of the secondary metabolome of Streptomyces rapamycinicus, the producer of rapamycin, we observed accumulation of two compounds never before reported from this organism. Structural elucidation revealed actinoplanic acid A and its demethyl analogue. Actinoplanic acids (APLs) are potent inhibitors of Ras farnesyltransferase and therefore represent bioactive compounds of medicinal interest. Supported with the unique structure of these polyketides and using genome mining, we identified a gene cluster responsible for their biosynthesis in S. rapamycinicus Based on experimental evidence and genetic organization of the cluster, we propose a stepwise biosynthesis of APL, the first bacterial example of a pathway incorporating the rare tricarballylic moiety into an NP. Although phylogenetically distant, the pathway shares some of the biosynthetic principles with the mycotoxins fumonisins. Namely, the core polyketide is acylated with the tricarballylate by an atypical nonribosomal peptide synthetase-catalyzed ester formation. Finally, motivated by the conserved colocalization of the rapamycin and APL pathway clusters in S. rapamycinicus and all other rapamycin-producing actinobacteria, we confirmed a strong synergism of these compounds in antifungal assays. Mining for such evolutionarily conserved coharboring of pathways would likely reveal further examples of NP sets, attacking multiple targets on the same foe. These could then serve as a guide for development of new combination therapies.© 2018 Mrak et al.


September 21, 2019  |  

Functional analysis of the first complete genome sequence of a multidrug resistant sequence type 2 Staphylococcus epidermidis.

Staphylococcus epidermidis is a significant opportunistic pathogen of humans. The ST2 lineage is frequently multidrug resistant and accounts for most of the clinical disease worldwide. However, there are no publically available, closed ST2 genomes and pathogenesis studies have not focused on these strains. We report the complete genome and methylome of BPH0662, a multidrug resistant, hospital adapted, ST2 S. epidermidis, and describe the correlation between resistome and phenotype, as well as demonstrate its relationship to publically available, international ST2 isolates. Furthermore, we delineate the methylome determined by the two type I restriction modification systems present in BPH0662 through heterologous expression in Escherichia coli, allowing the assignment of each system to its corresponding target recognition motif. As the first complete ST2 S. epidermidis genome, BPH0662 provides a valuable reference for future genomic studies of this clinically relevant lineage. Defining the methylome and the construction of these E. coli hosts provides the foundation for the development of molecular tools to bypass restriction modification systems in this lineage that has hitherto proven intractable.


July 19, 2019  |  

Preparation of next-generation DNA sequencing libraries from ultra-low amounts of input DNA: Application to single-molecule, real-time (SMRT) sequencing on the Pacific Biosciences RS II.

We have developed and validated an amplification-free method for generating DNA sequencing libraries from very low amounts of input DNA (500 picograms – 20 nanograms) for single- molecule sequencing on the Pacific Biosciences (PacBio) RS II sequencer. The common challenge of high input requirements for single-molecule sequencing is overcome by using a carrier DNA in conjunction with optimized sequencing preparation conditions and re-use of the MagBead-bound complex. Here we describe how this method can be used to produce sequencing yields comparable to those generated from standard input amounts, but by using 1000-fold less starting material.


July 19, 2019  |  

Single molecule sequencing and genome assembly of a clinical specimen of Loa loa, the causative agent of loiasis.

More than 20% of the world’s population is at risk for infection by filarial nematodes and >180 million people worldwide are already infected. Along with infection comes significant morbidity that has a socioeconomic impact. The eight filarial nematodes that infect humans are Wuchereria bancrofti, Brugia malayi, Brugia timori, Onchocerca volvulus, Loa loa, Mansonella perstans, Mansonella streptocerca, and Mansonella ozzardi, of which three have published draft genome sequences. Since all have humans as the definitive host, standard avenues of research that rely on culturing and genetics have often not been possible. Therefore, genome sequencing provides an important window into understanding the biology of these parasites. The need for large amounts of high quality genomic DNA from homozygous, inbred lines; the availability of only short sequence reads from next-generation sequencing platforms at a reasonable expense; and the lack of random large insert libraries has limited our ability to generate high quality genome sequences for these parasites. However, the Pacific Biosciences single molecule, real-time sequencing platform holds great promise in reducing input amounts and generating sufficiently long sequences that bypass the need for large insert paired libraries.Here, we report on efforts to generate a more complete genome assembly for L. loa using genetically heterogeneous DNA isolated from a single clinical sample and sequenced on the Pacific Biosciences platform. To obtain the best assembly, numerous assemblers and sequencing datasets were analyzed, combined, and compared. Quiver-informed trimming of an assembly of only Pacific Biosciences reads by HGAP2 was selected as the final assembly of 96.4 Mbp in 2,250 contigs. This results in ~9% more of the genome in ~85% fewer contigs from ~80% less starting material at a fraction of the cost of previous Roche 454-based sequencing efforts.The result is the most complete filarial nematode assembly produced thus far and demonstrates the utility of single molecule sequencing on the Pacific Biosciences platform for genetically heterogeneous metazoan genomes.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.