X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Wild relatives of maize

Crop domestication changed the course of human evolution, and domestication of maize (Zea mays L. subspecies mays), today the world’s most important crop, enabled civilizations to flourish and has played a major role in shaping the world we know today. Archaeological and ethnobotanical research help us understand the development of the cultures and the movements of the peoples who carried maize to new areas where it continued to adapt. Ancient remains of maize cobs and kernels have been found in the place of domestication, the Balsas River Valley (~9,000 years before present era), and the cultivation center, the Tehuacan Valley…

Read More »

Tuesday, April 21, 2020

A high-quality genome of Eragrostis curvula grass provides insights into Poaceae evolution and supports new strategies to enhance forage quality.

The Poaceae constitute a taxon of flowering plants (grasses) that cover almost all Earth’s inhabitable range and comprises some of the genera most commonly used for human and animal nutrition. Many of these crops have been sequenced, like rice, Brachypodium, maize and, more recently, wheat. Some important members are still considered orphan crops, lacking a sequenced genome, but having important traits that make them attractive for sequencing. Among these traits is apomixis, clonal reproduction by seeds, present in some members of the Poaceae like Eragrostis curvula. A de novo, high-quality genome assembly and annotation for E. curvula have been obtained…

Read More »

Tuesday, April 21, 2020

Modulation of metabolome and bacterial community in whole crop corn silage by inoculating homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri.

The present study investigated the species level based microbial community and metabolome in corn silage inoculated with or without homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri using the PacBio SMRT Sequencing and time-of-flight mass spectrometry (GC-TOF/MS). Chopped whole crop corn was treated with (1) deionized water (control), (2) Lactobacillus plantarum, or (3) Lactobacillus buchneri. The chopped whole crop corn was ensiled in vacuum-sealed polyethylene bags containing 300 g of fresh forge for 90 days, with three replicates for each treatment. The results showed that a total of 979 substances were detected, and 316 different metabolites were identified. Some metabolites with…

Read More »

Tuesday, April 21, 2020

Extensive intraspecific gene order and gene structural variations in upland cotton cultivars.

Multiple cotton genomes (diploid and tetraploid) have been assembled. However, genomic variations between cultivars of allotetraploid upland cotton (Gossypium hirsutum L.), the most widely planted cotton species in the world, remain unexplored. Here, we use single-molecule long read and Hi-C sequencing technologies to assemble genomes of the two upland cotton cultivars TM-1 and zhongmiansuo24 (ZM24). Comparisons among TM-1 and ZM24 assemblies and the genomes of the diploid ancestors reveal a large amount of genetic variations. Among them, the top three longest structural variations are located on chromosome A08 of the tetraploid upland cotton, which account for ~30% total length of…

Read More »

Tuesday, April 21, 2020

Sequence properties of certain GC rich avian genes, their origins and absence from genome assemblies: case studies.

More and more eukaryotic genomes are sequenced and assembled, most of them presented as a complete model in which missing chromosomal regions are filled by Ns and where a few chromosomes may be lacking. Avian genomes often contain sequences with high GC content, which has been hypothesized to be at the origin of many missing sequences in these genomes. We investigated features of these missing sequences to discover why some may not have been integrated into genomic libraries and/or sequenced.The sequences of five red jungle fowl cDNA models with high GC content were used as queries to search publicly available…

Read More »

Tuesday, April 21, 2020

The Impact of cDNA Normalization on Long-Read Sequencing of a Complex Transcriptome

Normalization of cDNA is widely used to improve the coverage of rare transcripts in analysis of transcriptomes employing next-generation sequencing. Recently, long-read technology has been emerging as a powerful tool for sequencing and construction of transcriptomes, especially for complex genomes containing highly similar transcripts and transcript-spliced isoforms. Here, we analyzed the transcriptome of sugarcane, with a highly polyploidy plant genome, by PacBio isoform sequencing (Iso-Seq) of two different cDNA library preparations, with and without a normalization step. The results demonstrated that, while the two libraries included many of the same transcripts, many longer transcripts were removed and many new generally…

Read More »

Tuesday, April 21, 2020

Whole genome sequence and de novo assembly revealed genomic architecture of Indian Mithun (Bos frontalis).

Mithun (Bos frontalis), also called gayal, is an endangered bovine species, under the tribe bovini with 2n?=?58 XX chromosome complements and reared under the tropical rain forests region of India, China, Myanmar, Bhutan and Bangladesh. However, the origin of this species is still disputed and information on its genomic architecture is scanty so far. We trust that availability of its whole genome sequence data and assembly will greatly solve this problem and help to generate many information including phylogenetic status of mithun. Recently, the first genome assembly of gayal, mithun of Chinese origin, was published. However, an improved reference genome…

Read More »

Tuesday, April 21, 2020

A Pathovar of Xanthomonas oryzae Infecting Wild Grasses Provides Insight Into the Evolution of Pathogenicity in Rice Agroecosystems

Xanthomonas oryzae (Xo) are critical rice pathogens. Virulent lineages from Africa and Asia and less virulent strains from the US have been well characterized. X. campestris pv. leersiae (Xcl), first described in 1957, causes bacterial streak on the perennial grass, Leersia hexandra, and is a close relative of Xo. L. hexandra, a member of the Poaceae, is highly similar to rice phylogenetically, is globally ubiquitous around rice paddies, and is a reservoir of pathogenic Xo. We used long read, single molecule, real time (SMRT) genome sequences of five strains of Xcl from Burkina Faso, China, Mali and Uganda to determine…

Read More »

Tuesday, April 21, 2020

The genome of broomcorn millet.

Broomcorn millet (Panicum miliaceum L.) is the most water-efficient cereal and one of the earliest domesticated plants. Here we report its high-quality, chromosome-scale genome assembly using a combination of short-read sequencing, single-molecule real-time sequencing, Hi-C, and a high-density genetic map. Phylogenetic analyses reveal two sets of homologous chromosomes that may have merged ~5.6 million years ago, both of which exhibit strong synteny with other grass species. Broomcorn millet contains 55,930 protein-coding genes and 339 microRNA genes. We find Paniceae-specific expansion in several subfamilies of the BTB (broad complex/tramtrack/bric-a-brac) subunit of ubiquitin E3 ligases, suggesting enhanced regulation of protein dynamics may…

Read More »

Tuesday, April 21, 2020

Cichorium intybus L.?×?Cicerbita alpina Walbr.: doubled haploid chicory induction and CENH3 characterization

Intergeneric hybridization between industrial chicory (Cichorium intybus L.) and Cicerbita alpina Walbr. induces interspecific hybrids and haploid chicory plants after in vitro embryo rescue. The protocol yielded haploids in 5 out of 12 cultivars pollinated; altogether 18 haploids were regenerated from 2836 embryos, with a maximum efficiency of 1.96% haploids per cross. Obtained haploids were chromosome doubled with mitosis inhibitors trifluralin and oryzalin; exposure to 0.05 g L-1 oryzalin during one week was the most efficient treatment to regenerate doubled haploids. Inbreeding effects in vitro were limited, but the ploidy level affects morphology. Transcriptome sequencing revealed two unique copies of…

Read More »

Tuesday, April 21, 2020

Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes.

Transposable elements (TEs) are genomic parasites with major impacts on host genome architecture and host adaptation. A proper evaluation of their evolutionary significance has been hampered by the paucity of short scale phylogenetic comparisons between closely related species. Here, we characterized the dynamics of TE accumulation at the micro-evolutionary scale by comparing two closely related plant species, Arabidopsis lyrata and A. halleri.Joint genome annotation in these two outcrossing species confirmed that both contain two distinct populations of TEs with either ‘recent’ or ‘old’ insertion histories. Identification of rare segregating insertions suggests that diverse TE families contribute to the ongoing dynamics…

Read More »

Tuesday, April 21, 2020

Genome sequencing and comparison of five Tilletia species to identify candidate genes for the detection of regulated species infecting wheat

Tilletia species cause diseases on grass hosts with some causing bunt diseases on wheat (Triticum). Two of the four species infecting wheat have restricted distributions globally and are subject to quarantine regulations to prevent their spread to new areas. Tilletia indica causes Karnal bunt and is regulated by many countries while the non-regulated T. walkeri is morphologically similar and very closely related phylogenetically, but infects ryegrass (Lolium) and not wheat. Tilletia controversa causes dwarf bunt of wheat (DB) and is also regulated by some countries, while the closely related but non-regulated species, T. caries and T. laevis, both cause common…

Read More »

1 2 3

Subscribe for blog updates:

Archives