April 21, 2020  |  

Paenibacillus albus sp. nov., a UV radiation-resistant bacterium isolated from soil in Korea.

A novel Gram-stain-positive, motile, white color and endospore-forming bacterium, designated 18JY67-1T, was isolated from soil in Jeju Island, Korea. The strain grow at 15-42 °C (optimum 30 °C) in R2A medium at pH (6.0-9.5) (optimum 7.5). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 18JY67-1T formed a distinct lineage within the family Paenibacillaceae (order Bacillales, class Bacilli), and was closely related to Paenibacillus rhizoryzae (KP675984; 96.9% 16S rRNA gene sequence similarity). The major cellular fatty acids of the strain 18JY67-1T were C16:0 and anteiso-C15:0. The predominant respiratory quinones were MK-7. The major polar lipid was identified as diphosphatidylglycerol. On the basis of phenotypic, chemotaxonomic and genotypic properties clearly indicated that isolate 18JY67-1T represents a novel species within the genus Paenibacillus, for which the name Paenibacillus flavus sp. nov. is proposed. The type strain of Paenibacillus flavus is 18JY67-1T (=?KCTC 33959T =?JCM 33184T).


April 21, 2020  |  

Insights into transcriptional characteristics and homoeolog expression bias of embryo and de-embryonated kernels in developing grain through RNA-Seq and Iso-Seq.

Bread wheat (Triticum aestivum L.) is an allohexaploid, and the transcriptional characteristics of the wheat embryo and endosperm during grain development remain unclear. To analyze the transcriptome, we performed isoform sequencing (Iso-Seq) for wheat grain and RNA sequencing (RNA-Seq) for the embryo and de-embryonated kernels. The differential regulation between the embryo and de-embryonated kernels was found to be greater than the difference between the two time points for each tissue. Exactly 2264 and 4790 tissue-specific genes were found at 14 days post-anthesis (DPA), while 5166 and 3784 genes were found at 25 DPA in the embryo and de-embryonated kernels, respectively. Genes expressed in the embryo were more likely to be related to nucleic acid and enzyme regulation. In de-embryonated kernels, genes were rich in substance metabolism and enzyme activity functions. Moreover, 4351, 4641, 4516, and 4453 genes with the A, B, and D homoeoloci were detected for each of the four tissues. Expression characteristics suggested that the D genome may be the largest contributor to the transcriptome in developing grain. Among these, 48, 66, and 38 silenced genes emerged in the A, B, and D genomes, respectively. Gene ontology analysis showed that silenced genes could be inclined to different functions in different genomes. Our study provided specific gene pools of the embryo and de-embryonated kernels and a homoeolog expression bias model on a large scale. This is helpful for providing new insights into the molecular physiology of wheat.


April 21, 2020  |  

Rapid evolution of a-gliadin gene family revealed by analyzing Gli-2 locus regions of wild emmer wheat.

a-Gliadins are a major group of gluten proteins in wheat flour that contribute to the end-use properties for food processing and contain major immunogenic epitopes that can cause serious health-related issues including celiac disease (CD). a-Gliadins are also the youngest group of gluten proteins and are encoded by a large gene family. The majority of the gene family members evolved independently in the A, B, and D genomes of different wheat species after their separation from a common ancestral species. To gain insights into the origin and evolution of these complex genes, the genomic regions of the Gli-2 loci encoding a-gliadins were characterized from the tetraploid wild emmer, a progenitor of hexaploid bread wheat that contributed the AABB genomes. Genomic sequences of Gli-2 locus regions for the wild emmer A and B genomes were first reconstructed using the genome sequence scaffolds along with optical genome maps. A total of 24 and 16 a-gliadin genes were identified for the A and B genome regions, respectively. a-Gliadin pseudogene frequencies of 86% for the A genome and 69% for the B genome were primarily caused by C to T substitutions in the highly abundant glutamine codons, resulting in the generation of premature stop codons. Comparison with the homologous regions from the hexaploid wheat cv. Chinese Spring indicated considerable sequence divergence of the two A genomes at the genomic level. In comparison, conserved regions between the two B genomes were identified that included a-gliadin pseudogenes containing shared nested TE insertions. Analyses of the genomic organization and phylogenetic tree reconstruction indicate that although orthologous gene pairs derived from speciation were present, large portions of a-gliadin genes were likely derived from differential gene duplications or deletions after the separation of the homologous wheat genomes ~?0.5 MYA. The higher number of full-length intact a-gliadin genes in hexaploid wheat than that in wild emmer suggests that human selection through domestication might have an impact on a-gliadin evolution. Our study provides insights into the rapid and dynamic evolution of genomic regions harboring the a-gliadin genes in wheat.


April 21, 2020  |  

The Chinese chestnut genome: a reference for species restoration

Forest tree species are increasingly subject to severe mortalities from exotic pests, diseases, and invasive organisms, accelerated by climate change. Forest health issues are threatening multiple species and ecosystem sustainability globally. While sources of resistance may be available in related species, or among surviving trees, introgression of resistance genes into threatened tree species in reasonable time frames requires genome-wide breeding tools. Asian species of chestnut (Castanea spp.) are being employed as donors of disease resistance genes to restore native chestnut species in North America and Europe. To aid in the restoration of threatened chestnut species, we present the assembly of a reference genome with chromosome-scale sequences for Chinese chestnut (C. mollissima), the disease-resistance donor for American chestnut restoration. We also demonstrate the value of the genome as a platform for research and species restoration, including new insights into the evolution of blight resistance in Asian chestnut species, the locations in the genome of ecologically important signatures of selection differentiating American chestnut from Chinese chestnut, the identification of candidate genes for disease resistance, and preliminary comparisons of genome organization with related species.


April 21, 2020  |  

Towards PacBio-based pan-eukaryote metabarcoding using full-length ITS sequences.

Development of high-throughput sequencing techniques have greatly benefited our understanding about microbial ecology; yet the methods producing short reads suffer from species-level resolution and uncertainty of identification. Here we optimize PacBio-based metabarcoding protocols covering the Internal Transcribed Spacer (ITS region) and partial Small Subunit (SSU) of the rRNA gene for species-level identification of all eukaryotes, with a specific focus on Fungi (including Glomeromycota) and Stramenopila (particularly Oomycota). Based on tests on composite soil samples and mock communities, we propose best suitable degenerate primers, ITS9munngs + ITS4ngsUni for eukaryotes and selected groups therein and discuss pros and cons of long read-based identification of eukaryotes. This article is protected by copyright. All rights reserved.


April 21, 2020  |  

Microbial diversity in the tick Argas japonicus (Acari: Argasidae) with a focus on Rickettsia pathogens.

The soft tick Argas japonicus mainly infests birds and can cause human dermatitis; however, no pathogen has been identified from this tick species in China. In the present study, the microbiota in A. japonicus collected from an epidemic community was explored, and some putative Rickettsia pathogens were further characterized. The results obtained indicated that bacteria in A. japonicus were mainly ascribed to the phyla Proteobacteria, Firmicutes and Actinobacteria. At the genus level, the male A. japonicus harboured more diverse bacteria than the females and nymphs. The bacteria Alcaligenes, Pseudomonas, Rickettsia and Staphylococcus were common in nymphs and adults. The abundance of bacteria belonging to the Rickettsia genus in females and males was 7.27% and 10.42%, respectively. Furthermore, the 16S rRNA gene of Rickettsia was amplified and sequenced, and phylogenetic analysis revealed that 13 sequences were clustered with the spotted fever group rickettsiae (Rickettsia heilongjiangensis and Rickettsia japonica) and three were clustered with Rickettsia limoniae, which suggested that the characterized Rickettsia in A. japonicus were novel putative pathogens and also that the residents were at considerable risk for infection by tick-borne pathogens. © 2019 The Royal Entomological Society.


April 21, 2020  |  

Complete genome sequence of Bacillus velezensis JT3-1, a microbial germicide isolated from yak feces

Bacillus velezensis JT3-1 is a probiotic strain isolated from feces of the domestic yak (Bos grunniens) in the Gansu province of China. It has strong antagonistic activity against Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella Typhimurium, Mannheimia haemolytica, Staphylococcus hominis, Clostridium perfringens, and Mycoplasma bovis. These properties have made the JT3-1 strain the focus of commercial interest. In this study, we describe the complete genome sequence of JT3-1, with a genome size of 3,929,799 bp, 3761 encoded genes and an average GC content of 46.50%. Whole genome sequencing of Bacillus velezensis JT3-1 will lay a good foundation for elucidation of the mechanisms of its antimicrobial activity, and for its future application.


April 21, 2020  |  

High satellite repeat turnover in great apes studied with short- and long-read technologies.

Satellite repeats are a structural component of centromeres and telomeres, and in some instances their divergence is known to drive speciation. Due to their highly repetitive nature, satellite sequences have been understudied and underrepresented in genome assemblies. To investigate their turnover in great apes, we studied satellite repeats of unit sizes up to 50?bp in human, chimpanzee, bonobo, gorilla, and Sumatran and Bornean orangutans, using unassembled short and long sequencing reads. The density of satellite repeats, as identified from accurate short reads (Illumina), varied greatly among great ape genomes. These were dominated by a handful of abundant repeated motifs, frequently shared among species, which formed two groups: (1) the (AATGG)n repeat (critical for heat shock response) and its derivatives; and (2) subtelomeric 32-mers involved in telomeric metabolism. Using the densities of abundant repeats, individuals could be classified into species. However clustering did not reproduce the accepted species phylogeny, suggesting rapid repeat evolution. Several abundant repeats were enriched in males vs. females; using Y chromosome assemblies or FIuorescent In Situ Hybridization, we validated their location on the Y. Finally, applying a novel computational tool, we identified many satellite repeats completely embedded within long Oxford Nanopore and Pacific Biosciences reads. Such repeats were up to 59?kb in length and consisted of perfect repeats interspersed with other similar sequences. Our results based on sequencing reads generated with three different technologies provide the first detailed characterization of great ape satellite repeats, and open new avenues for exploring their functions. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


April 21, 2020  |  

Strengths and potential pitfalls of hay-transfer for ecological restoration revealed by RAD-seq analysis in floodplain Arabis species

Achieving high intraspecific genetic diversity is a critical goal in ecological restoration as it increases the adaptive potential and long-term resilience of populations. Thus, we investigated genetic diversity within and between pristine sites in a fossil floodplain and compared it to sites restored by hay-transfer between 1997 and 2014. RAD-seq genotyping revealed that the stenoecious flood-plain species Arabis nemorensis is co-occurring with individuals that, based on ploidy, ITS-sequencing and morphology, probably belong to the close relative Arabis sagittata, which has a documented preference for dry calcareous grasslands but has not been reported in floodplain meadows. We show that hay-transfer maintains genetic diversity for both species. Additionally, in A. sagittata, transfer from multiple genetically isolated pristine sites resulted in restored sites with increased diversity and admixed local genotypes. In A. nemorensis, transfer did not create novel admixture dynamics because genetic diversity between pristine sites was less differentiated. Thus, the effects of hay-transfer on genetic diversity also depend on the genetic makeup of the donor communities of each species, especially when local material is mixed. Our results demonstrate the efficiency of hay-transfer for habitat restoration and emphasize the importance of pre-restoration characterization of micro-geographic patterns of intraspecific diversity of the community to guarantee that restoration practices reach their goal, i.e. maximize the adaptive potential of the entire restored plant community. Overlooking these patterns may alter the balance between species in the community. Additionally, our comparison of summary statistics obtained from de novo and reference-based RAD-seq pipelines shows that the genomic impact of restoration can be reliably monitored in species lacking prior genomic knowledge.


April 21, 2020  |  

Morphological and genomic characterisation of the hybrid schistosome infecting humans in Europe reveals a complex admixture between Schistosoma haematobium and Schistosoma bovis parasites

Schistosomes cause schistosomiasis, the worldtextquoterights second most important parasitic disease after malaria. A peculiar feature of schistosomes is their ability to produce viable and fertile hybrids. Originally only present in the tropics, schistosomiasis is now also endemic in Europe. Based on two genetic markers the European species had been identified as a hybrid between the ruminant-infective Schistosoma bovis and the human-infective Schistosoma haematobium.Here we describe for the first time the genomic composition of the European schistosome hybrid (77% of S. haematobium and 23% of S. bovis origins), its morphometric parameters and its compatibility with the European vector snail and intermediate host Compatibility is a key parameter for the parasites life cycle progression. We also show that egg morphology (a classical diagnostic parameter) does not allow for differential diagnosis while genetic tests do so. Additionally, we performed genome assembly improvement and annotation of S. bovis, the parental species for which no satisfactory genome assembly was available.For the first time since the discovery of hybrid schistosomes, these results reveal at the whole genomic level a complex admixture of parental genomes highlighting (i) the high permeability of schistosomes to other speciestextquoteright alleles, and (ii) the importance of hybrid formation for pushing species boundaries not only conceptionally but also geographically.


April 21, 2020  |  

Optimized Cas9 expression systems for highly efficient Arabidopsis genome editing facilitate isolation of complex alleles in a single generation.

Genetic resources for the model plant Arabidopsis comprise mutant lines defective in almost any single gene in reference accession Columbia. However, gene redundancy and/or close linkage often render it extremely laborious or even impossible to isolate a desired line lacking a specific function or set of genes from segregating populations. Therefore, we here evaluated strategies and efficiencies for the inactivation of multiple genes by Cas9-based nucleases and multiplexing. In first attempts, we succeeded in isolating a mutant line carrying a 70 kb deletion, which occurred at a frequency of ~?1.6% in the T2 generation, through PCR-based screening of numerous individuals. However, we failed to isolate a line lacking Lhcb1 genes, which are present in five copies organized at two loci in the Arabidopsis genome. To improve efficiency of our Cas9-based nuclease system, regulatory sequences controlling Cas9 expression levels and timing were systematically compared. Indeed, use of DD45 and RPS5a promoters improved efficiency of our genome editing system by approximately 25-30-fold in comparison to the previous ubiquitin promoter. Using an optimized genome editing system with RPS5a promoter-driven Cas9, putatively quintuple mutant lines lacking detectable amounts of Lhcb1 protein represented approximately 30% of T1 transformants. These results show how improved genome editing systems facilitate the isolation of complex mutant alleles, previously considered impossible to generate, at high frequency even in a single (T1) generation.


April 21, 2020  |  

Genome sequence analysis of 91 Salmonella Enteritidis isolates from mice caught on poultry farms in the mid 1990s.

A total of 91 draft genome sequences were used to analyze isolates of Salmonella enterica serovar Enteritidis obtained from feral mice caught on poultry farms in Pennsylvania. One objective was to find mutations disrupting open reading frames (ORFs) and another was to determine if ORF-disruptive mutations were present in isolates obtained from other sources. A total of 83 mice were obtained between 1995-1998. Isolates separated into two genomic clades and 12 subgroups due to 742 mutations. Nineteen ORF-disruptive mutations were found, and in addition, bigA had exceptional heterogeneity requiring additional evaluation. The TRAMS algorithm detected only 6 ORF disruptions. The sefD mutation was the most frequently encountered mutation and it was prevalent in human, poultry, environmental and mouse isolates. These results confirm previous assessments of the mouse as a rich source of Salmonella enterica serovar Enteritidis that varies in genotype and phenotype. Copyright © 2019. Published by Elsevier Inc.


April 21, 2020  |  

Evolution and global transmission of a multidrug-resistant, community-associated MRSA lineage from the Indian subcontinent

The evolution and global transmission of antimicrobial resistance has been well documented in Gram-negative bacteria and healthcare-associated epidemic pathogens, often emerging from regions with heavy antimicrobial use. However, the degree to which similar processes occur with Gram-positive bacteria in the community setting is less well understood. Here, we trace the recent origins and global spread of a multidrug resistant, community-associated Staphylococcus aureus lineage from the Indian subcontinent, the Bengal Bay clone (ST772). We generated whole genome sequence data of 340 isolates from 14 countries, including the first isolates from Bangladesh and India, to reconstruct the evolutionary history and genomic epidemiology of the lineage. Our data shows that the clone emerged on the Indian subcontinent in the early 1970s and disseminated rapidly in the 1990s. Short-term outbreaks in community and healthcare settings occurred following intercontinental transmission, typically associated with travel and family contacts on the subcontinent, but ongoing endemic transmission was uncommon. Acquisition of a multidrug resistance integrated plasmid was instrumental in the divergence of a single dominant and globally disseminated clade in the early 1990s. Phenotypic data on biofilm, growth and toxicity point to antimicrobial resistance as the driving force in the evolution of ST772. The Bengal Bay clone therefore combines the multidrug resistance of traditional healthcare-associated clones with the epidemiological transmission of community-associated MRSA. Our study demonstrates the importance of whole genome sequencing for tracking the evolution of emerging and resistant pathogens. It provides a critical framework for ongoing surveillance of the clone on the Indian subcontinent and elsewhere.Importance The Bengal Bay clone (ST772) is a community-acquired and multidrug-resistant Staphylococcus aureus lineage first isolated from Bangladesh and India in 2004. In this study, we show that the Bengal Bay clone emerged from a virulent progenitor circulating on the Indian subcontinent. Its subsequent global transmission was associated with travel or family contact in the region. ST772 progressively acquired specific resistance elements at limited cost to its fitness and continues to be exported globally resulting in small-scale community and healthcare outbreaks. The Bengal Bay clone therefore combines the virulence potential and epidemiology of community-associated clones with the multidrug-resistance of healthcare-associated S. aureus lineages. This study demonstrates the importance of whole genome sequencing for the surveillance of highly antibiotic resistant pathogens, which may emerge in the community setting of regions with poor antibiotic stewardship and rapidly spread into hospitals and communities across the world.


April 21, 2020  |  

Rapid transcriptional responses to serum exposure are associated with sensitivity and resistance to antibody-mediated complement killing in invasive Salmonella Typhimurium ST313

Background: Salmonella Typhimurium ST313 exhibits signatures of adaptation to invasive human infection, including higher resistance to humoral immune responses than gastrointestinal isolates. Full resistance to antibody-mediated complement killing (serum resistance) among nontyphoidal Salmonellae is uncommon, but selection of highly resistant strains could compromise vaccine-induced antibody immunity. Here, we address the hypothesis that serum resistance is due to a distinct genotype or transcriptome response in S. Typhimurium ST313.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.