Menu
June 1, 2021  |  

Collection of major HLA allele sequences in Japanese population toward the precise NGS based HLA DNA typing at the field 4 level

We previously reported on the use of the Ion PGM next generation sequencing (NGS) platform to genotype HLA class I and class II genes by a super-high resolution, single-molecule, sequence-based typing (SS-SBT) method (Shiina et al. 2012). However, HLA alleles could not be assigned at the field 4 level at some HLA loci such as DQA1, DPA1 and DPB1 because the SNP and indel densities were too low to identify and separate both of the phases. In this regard, we have now added the single molecule, real-time (SMRT) DNA sequencer PacBio RS II method to our analysis in order to test whether it might determine the HLA allele sequences in some of the loci with which we previously had difficulties. In this study, we report on sequence-based genotyping of entire HLA gene sequences from the promoter-enhancer region to 3’UTR of the major HLA loci (A, B, C, DRB1, DRB345, DQA1, DQB1, DPA1 and DPB1) using 46 Japanese reference subjects who represented a distribution of more than 99.5% of the HLA alleles at each of the HLA loci and the PacBio RS II and Ion PGM systems.


June 1, 2021  |  

Analysis of 37,000 Caucasian samples reveals tight linkage between SNP RS9277534 and high resolution typing of HLA-DPB1

HLA-DPB1 mismatching between patients and unrelated donors is known to increase the risk of acute graft-versus-host-disease (GvHD) after hematopoietic stem cell transplantation. If only HLA-DPB1 mismatched donors are available, the genotype defined by the Single Nucleotide Polymorphism (SNP) rs9277534 can be used to select mismatched donors that are well-tolerated. However, since rs9277534 resides within the 3’ untranslated region (UTR), it usually is not analyzed during DPB1 routine typing.


June 1, 2021  |  

Characterizing haplotype diversity at the immunoglobulin heavy chain locus across human populations using novel long-read sequencing and assembly approaches

The human immunoglobulin heavy chain locus (IGH) remains among the most understudied regions of the human genome. Recent efforts have shown that haplotype diversity within IGH is elevated and exhibits population specific patterns; for example, our re-sequencing of the locus from only a single chromosome uncovered >100 Kb of novel sequence, including descriptions of six novel alleles, and four previously unmapped genes. Historically, this complex locus architecture has hindered the characterization of IGH germline single nucleotide, copy number, and structural variants (SNVs; CNVs; SVs), and as a result, there remains little known about the role of IGH polymorphisms in inter-individual antibody repertoire variability and disease. To remedy this, we are taking a multi-faceted approach to improving existing genomic resources in the human IGH region. First, from whole-genome and fosmid-based datasets, we are building the largest and most ethnically diverse set of IGH reference assemblies to date, by employing PacBio long-read sequencing combined with novel algorithms for phased haplotype assembly. In total, our effort will result in the characterization of >15 phased haplotypes from individuals of Asian, African, and European descent, to be used as a representative reference set by the genomics and immunogenetics community. Second, we are utilizing this more comprehensive sequence catalogue to inform the design and analysis of novel targeted IGH genotyping assays. Standard targeted DNA enrichment methods (e.g., exome capture) are currently optimized for the capture of only very short (100’s of bp) DNA segments. Our platform uses a modified bench protocol to pair existing capture-array technologies with the enrichment of longer fragments of DNA, enabling the use of PacBio sequencing of DNA segments up to 7 Kb. This substantial increase in contiguity disambiguates many of the complex repeated structures inherent to the locus, while yielding the base pair fidelity required to call SNVs. Together these resources will establish a stronger framework for further characterizing IGH genetic diversity and facilitate IGH genomic profiling in the clinical and research settings, which will be key to fully understanding the role of IGH germline variation in antibody repertoire development and disease.


June 1, 2021  |  

Structural variant detection with low-coverage Pacbio sequencing

Despite amazing progress over the past quarter century in the technology to detect genetic variants, intermediate-sized structural variants (50 bp to 50 kb) have remained difficult to identify. Such variants are too small to detect with array comparative genomic hybridization, but too large to reliably discover with short-read DNA sequencing. Recent de novo assemblies of human genomes have demonstrated the power of PacBio Single Molecule, Real-Time (SMRT) Sequencing to fill this technology gap and sensitively identify structural variants in the human genome. While de novo assembly is the ideal method to identify variants in a genome, it requires high depth of coverage. A structural variant discovery approach that utilizes lower coverage would facilitate evaluation of large patient and population cohorts. Here we introduce such an approach and apply it to 10-fold coverage of several human genomes generated on the PacBio Sequel System. To identify structural variants in low-fold coverage whole genome sequencing data, we apply a reference-based, re-sequencing workflow. First, reads are mapped to the human reference genome with a local aligner. The local alignments often end at structural variant loci. To connect co-linear local alignments across structural variants, we apply a novel algorithm that merges alignments into “chains” and refines the alignment edges. Then, the chained alignments are scanned for windows with an excess of insertions or deletions to identify candidate structural variant loci. Finally, the read support at each putative variant locus is evaluated to produce a variant call. Single nucleotide information is incorporated to phase and evaluate the zygosity of each structural variant. In 10-fold coverage human genome sequence, we identify the vast majority of the structural variants found by de novo assembly, thus demonstrating the power of low-fold coverage SMRT Sequencing to affordably and effectively detect structural variants.


June 1, 2021  |  

Screening for causative structural variants in neurological disorders using long-read sequencing

Over the past decades neurological disorders have been extensively studied producing a large number of candidate genomic regions and candidate genes. The SNPs identified in these studies rarely represent the true disease-related functional variants. However, more recently a shift in focus from SNPs to larger structural variants has yielded breakthroughs in our understanding of neurological disorders.Here we have developed candidate gene screening methods that combine enrichment of long DNA fragments with long-read sequencing that is optimized for structural variation discovery. We have also developed a novel, amplification-free enrichment technique using the CRISPR/Cas9 system to target genomic regions.We sequenced gDNA and full-length cDNA extracted from the temporal lobe for two Alzheimer’s patients for 35 GWAS candidate genes. The multi-kilobase long reads allowed for phasing across the genes and detection of a broad range of genomic variants including SNPs to multi-kilobase insertions, deletions and inversions. In the full-length cDNA data we detected differential allelic isoform complexity, novel exons as well as transcript isoforms. By combining the gDNA data with full-length isoform characterization allows to build a more comprehensive view of the underlying biological disease mechanisms in Alzheimer’s disease. Using the novel PCR-free CRISPR-Cas9 enrichment method we screened several genes including the hexanucleotide repeat expansion C9ORF72 that is associated with 40% of familiar ALS cases. This method excludes any PCR bias or errors from an otherwise hard to amplify region as well as preserves the basemodication in a single molecule fashion which allows you to capture mosaicism present in the sample.


June 1, 2021  |  

Detecting pathogenic structural variants with low-coverage PacBio sequencing.

Though a role for structural variants in human disease has long been recognized, it has remained difficult to identify intermediate-sized variants (50 bp to 5 kb), which are too small to detect with array comparative genomic hybridization, but too large to reliably discover with short-read DNA sequencing. Recent studies have demonstrated that PacBio Single Molecule, Real-Time (SMRT) sequencing fills this technology gap. SMRT sequencing detects tens of thousands of structural variants in the human genome, approximately five times the sensitivity of short-read DNA sequencing.


June 1, 2021  |  

Structural variant detection with low-coverage PacBio sequencing

Structural variants (genomic differences =50 base pairs) contribute to the evolution of organisms traits and human disease. Most structural variants (SVs) are too small to detect with array comparative genomic hybridization but too large to reliably discover with short-read DNA sequencing. Recent studies in human genomes show that PacBio SMRT Sequencing sensitively detects structural variants.


June 1, 2021  |  

Mitochondrial DNA sequencing using PacBio SMRT technology

Mitochondrial DNA (mtDNA) is a compact, double-stranded circular genome of 16,569 bp with a cytosine-rich light (L) chain and a guanine-rich heavy (H) chain. mtDNA mutations have been increasingly recognized as important contributors to an array of human diseases such as Parkinson’s disease, Alzheimer’s disease, colorectal cancer and Kearns–Sayre syndrome. mtDNA mutations can affect all of the 1000-10,000 copies of the mitochondrial genome present in a cell (homoplasmic mutation) or only a subset of copies (heteroplasmic mutation). The ratio of normal to mutant mtDNAs within cells is a significant factor in whether mutations will result in disease, as well as the clinical presentation, penetrance, and severity of the phenotype. Over time, heteroplasmic mutations can become homoplastic due to differential replication and random assortment. Full characterization of the mitochondrial genome would involve detection of not only homoplastic but heteroplasmic mutations, as well as complete phasing. Previously, we sequenced human mtDNA on the PacBio RS II System with two partially overlapping amplicons. Here, we present amplification-free, full-length sequencing of linearized mtDNA using the Sequel System. Full-length sequencing allows variant phasing along the entire mitochondrial genome, identification of heteroplasmic variants, and detection of epigenetic modifications that are lost in amplicon-based methods.


June 1, 2021  |  

High-throughput SMRT Sequencing of clinically relevant targets

Targeted sequencing with Sanger as well as short read based high throughput sequencing methods is standard practice in clinical genetic testing. However, many applications beyond SNP detection have remained somewhat obstructed due to technological challenges. With the advent of long reads and high consensus accuracy, SMRT Sequencing overcomes many of the technical hurdles faced by Sanger and NGS approaches, opening a broad range of untapped clinical sequencing opportunities. Flexible multiplexing options, highly adaptable sample preparation method and newly improved two well-developed analysis methods that generate highly-accurate sequencing results, make SMRT Sequencing an adept method for clinical grade targeted sequencing. The Circular Consensus Sequencing (CCS) analysis pipeline produces QV 30 data from each single intra-molecular multi-pass polymerase read, making it a reliable solution for detecting minor variant alleles with frequencies as low as 1 %. Long Amplicon Analysis (LAA) makes use of insert spanning full-length subreads originating from multiple individual copies of the target to generate highly accurate and phased consensus sequences (>QV50), offering a unique advantage for imputation free allele segregation and haplotype phasing. Here we present workflows and results for a range of SMRT Sequencing clinical applications. Specifically, we illustrate how the flexible multiplexing options, simple sample preparation methods and new developments in data analysis tools offered by PacBio in support of Sequel System 5.1 can come together in a variety of experimental designs to enable applications as diverse as high throughput HLA typing, mitochondrial DNA sequencing and viral vector integrity profiling of recombinant adeno-associated viral genomes (rAAV).


June 1, 2021  |  

Joint calling and PacBio SMRT Sequencing for indel and structural variant detection in populations

Fast and effective variant calling algorithms have been crucial to the successful application of DNA sequencing in human genetics. In particular, joint calling – in which reads from multiple individuals are pooled to increase power for shared variants – is an important tool for population surveys of variation. Joint calling was applied by the 1000 Genomes Project to identify variants across many individuals each sequenced to low coverage (about 5-fold). This approach successfully found common small variants, but broadly missed structural variants and large indels for which short-read sequencing has limited sensitivity. To support use of large variants in rare disease and common trait association studies, it is necessary to perform population-scale surveys with a technology effective at detecting indels and structural variants, such as PacBio SMRT Sequencing. For these studies, it is important to have a joint calling workflow that works with PacBio reads. We have developed pbsv, an indel and structural variant caller for PacBio reads, that provides a two-step joint calling workflow similar to that used to build the ExAC database. The first stage, discovery, is performed separately for each sample and consolidates whole genome alignments into a sparse representation of potentially variant loci. The second stage, calling, is performed on all samples together and considers only the signatures identified in the discovery stage. We applied the pbsv joint calling workflow to PacBio reads from twenty human genomes, with coverage ranging from 5-fold to 80-fold per sample for a total of 460-fold. The analysis required only 102 CPU hours, and identified over 800,000 indels and structural variants, including hundreds of inversions and translocations, many times more than discovered with short-read sequencing. The workflow is scalable to thousands of samples. The ongoing application of this workflow to thousands of samples will provide insight into the evolution and functional importance of large variants in human evolution and disease.


June 1, 2021  |  

A simple segue from Sanger to high-throughput SMRT Sequencing with a M13 barcoding system

High-throughput NGS methods are increasingly utilized in the clinical genomics market. However, short-read sequencing data continues to remain challenged by mapping inaccuracies in low complexity regions or regions of high homology and may not provide adequate coverage within GC-rich regions of the genome. Thus, the use of Sanger sequencing remains popular in many clinical sequencing labs as the gold standard approach for orthogonal validation of variants and to interrogate missed regions poorly covered by second-generation sequencing. The use of Sanger sequencing can be less than ideal, as it can be costly for high volume assays and projects. Additionally, Sanger sequencing generates read lengths shorter than the region of interest, which limits its ability to accurately phase allelic variants. High-throughput SMRT Sequencing overcomes the challenges of both the first- and second-generation sequencing methods. PacBio’s long read capability allows sequencing of full-length amplicons


June 1, 2021  |  

Improving the reference with a diversity panel of sequence-resolved structural variation

Although the accuracy of the human reference genome is critical for basic and clinical research, structural variants (SVs) have been difficult to assess because data capable of resolving them have been limited. To address potential bias, we sequenced a diversity panel of nine human genomes to high depth using long-read, single-molecule, real-time sequencing data. Systematically identifying and merging SVs =50 bp in length for these nine and one public genome yielded 83,909 sequence-resolved insertions, deletions, and inversions. Among these, 2,839 (2.0 Mbp) are shared among all discovery genomes with an additional 13,349 (6.9 Mbp) present in the majority of humans, indicating minor alleles or errors in the reference, which is partially explained by an enrichment for GC-content and repetitive DNA. Genotyping 83% of these in 290 additional genomes confirms that at least one allele of the most common SVs in unique euchromatin are now sequence-resolved. We observe a 9-fold increase within 5 Mbp of chromosome telomeric ends and correlation with de novo single-nucleotide variant mutations showing that such variation is nonrandomly distributed defining potential hotspots of mutation. We identify SVs affecting coding and noncoding regulatory loci improving annotation and interpretation of functional variation. To illustrate the utility of sequence-resolved SVs in resequencing experiments, we mapped 30 diverse high-coverage Illumina-sequenced samples to GRCh38 with and without contigs containing SV insertions as alternate sequences, and we found these additional sequences recover 6.4% of unmapped reads. For reads mapped within the SV insertion, 25.7% have a better mapping quality, and 18.7% improved by 1,000-fold or more. We reveal 72,964 occurrences of 15,814 unique variants that were not discoverable with the reference sequence alone, and we note that 7% of the insertions contain an SV in at least one sample indicating that there are additional alleles in the population that remain to be discovered. These data provide the framework to construct a canonical human reference and a resource for developing advanced representations capable of capturing allelic diversity. We present a summary of our findings and discuss ideas for revealing variation that was once difficult to ascertain.


June 1, 2021  |  

Single molecule high-fidelity (HiFi) Sequencing with >10 kb libraries

Recent improvements in sequencing chemistry and instrument performance combine to create a new PacBio data type, Single Molecule High-Fidelity reads (HiFi reads). Increased read length and improvement in library construction enables average read lengths of 10-20 kb with average sequence identity greater than 99% from raw single molecule reads. The resulting reads have the accuracy comparable to short read NGS but with 50-100 times longer read length. Here we benchmark the performance of this data type by sequencing and genotyping the Genome in a Bottle (GIAB) HG0002 human reference sample from the National Institute of Standards and Technology (NIST). We further demonstrate the general utility of HiFi reads by analyzing multiple clones of Cabernet Sauvignon. Three different clones were sequenced and de novo assembled with the CANU assembly algorithm, generating draft assemblies of very high contiguity equal to or better than earlier assembly efforts using PacBio long reads. Using the Cabernet Sauvignon Clone 8 assembly as a reference, we mapped the HiFi reads generated from Clone 6 and Clone 47 to identify single nucleotide polymorphisms (SNPs) and structural variants (SVs) that are specific to each of the three samples.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.