April 21, 2020  |  

Insights into the bacterial species and communities of a full-scale anaerobic/anoxic/oxic wastewater treatment plant by using third-generation sequencing.

For the first time, full-length 16S rRNA sequencing method was applied to disclose the bacterial species and communities of a full-scale wastewater treatment plant using an anaerobic/anoxic/oxic (A/A/O) process in Wuhan, China. The compositions of the bacteria at phylum and class levels in the activated sludge were similar to which revealed by Illumina Miseq sequencing. At genus and species levels, third-generation sequencing showed great merits and accuracy. Typical functional taxa classified to ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), denitrifying bacteria (DB), anaerobic ammonium oxidation bacteria (ANAMMOXB) and polyphosphate-accumulating organisms (PAOs) were presented, which were Nitrosomonas (1.11%), Nitrospira (3.56%), Pseudomonas (3.88%), Planctomycetes (13.80%), Comamonadaceae (1.83%), respectively. Pseudomonas (3.88%) and Nitrospira (3.56%) were the most predominating two genera, mainly containing Pseudomonas extremaustralis (1.69%), Nitrospira defluvii (3.13%), respectively. Bacteria regarding to nitrogen and phosphorus removal at species level were put forward. The predicted functions proved that the A/A/O process was efficient regarding nitrogen and organics removal. Copyright © 2019 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.


April 21, 2020  |  

Detection of transferable oxazolidinone resistance determinants in Enterococcus faecalis and Enterococcus faecium of swine origin in Sichuan Province, China.

The aim of this study was to detect the transferable oxazolidinone resistance determinants (cfr, optrA and poxtA) in E. faecalis and E. faecium of swine origin in Sichuan Province, China.A total of 158 enterococci strains (93 E. faecalis and 65 E. faecium) isolated from 25 large-scale swine farms were screened for the presence of cfr, optrA and poxtA by PCR. The genetic environments of cfr, optrA and poxtA were characterized by whole genome sequencing. Transfer of oxazolidinone resistance determinants was determined by conjugation or electrotransformation experiments.The transferable oxazolidinone resistance determinants, cfr, optrA and poxtA, were detected in zero, six, and one enterococci strains, respectively. The poxtA in one E. faecalis strain was located on a 37,990 bp plasmid, which co-harbored fexB, cat, tet(L) and tet(M), and could be conjugated to E. faecalis JH2-2. One E. faecalis strain harbored two different OptrA variants, including one variant with a single substitution, Q219H, which has not been reported previously. Two optrA-carrying plasmids, pC25-1, with a size of 45,581 bp, and pC54, with a size of 64,500 bp, shared a 40,494 bp identical region that contained genetic context IS1216E-fexA-optrA-erm(A)-IS1216E, which could be electrotransformed into Staphylococcus aureus. Four different chromosomal optrA gene clusters were found in five strains, in which optrA was associated with Tn554 or Tn558 that were inserted into the radC gene.Our study highlights the fact that mobile genetic elements, such as plasmids, IS1216E, Tn554 and Tn558, may facilitate the horizontal transmission of optrA or poxtA.Copyright © 2019. Published by Elsevier Ltd.


April 21, 2020  |  

Microbial diversity in the tick Argas japonicus (Acari: Argasidae) with a focus on Rickettsia pathogens.

The soft tick Argas japonicus mainly infests birds and can cause human dermatitis; however, no pathogen has been identified from this tick species in China. In the present study, the microbiota in A. japonicus collected from an epidemic community was explored, and some putative Rickettsia pathogens were further characterized. The results obtained indicated that bacteria in A. japonicus were mainly ascribed to the phyla Proteobacteria, Firmicutes and Actinobacteria. At the genus level, the male A. japonicus harboured more diverse bacteria than the females and nymphs. The bacteria Alcaligenes, Pseudomonas, Rickettsia and Staphylococcus were common in nymphs and adults. The abundance of bacteria belonging to the Rickettsia genus in females and males was 7.27% and 10.42%, respectively. Furthermore, the 16S rRNA gene of Rickettsia was amplified and sequenced, and phylogenetic analysis revealed that 13 sequences were clustered with the spotted fever group rickettsiae (Rickettsia heilongjiangensis and Rickettsia japonica) and three were clustered with Rickettsia limoniae, which suggested that the characterized Rickettsia in A. japonicus were novel putative pathogens and also that the residents were at considerable risk for infection by tick-borne pathogens. © 2019 The Royal Entomological Society.


April 21, 2020  |  

Complete Genome Sequence of Enterococcus faecalis Strain SGAir0397, Isolated from a Tropical Air Sample Collected in Singapore.

Enterococcus faecalis strain SGAir0397 was isolated from a tropical air sample collected in Singapore. Its genome was assembled using single-molecule real-time sequencing data and comprises one circular chromosome with a length of 2.69 Mbp. The genome contains 2,595 protein-coding genes, 59 tRNAs, and 12 rRNAs.Copyright © 2019 Purbojati et al.


April 21, 2020  |  

Resequencing the Genome of Malassezia restricta Strain KCTC 27527.

The draft genome sequence of Malassezia restricta KCTC 27527, a clinical isolate from a patient with dandruff, was previously reported. Using the PacBio Sequel platform, we completed and reannotated the genome of M. restricta KCTC 27527 for a better understanding of the genome of this fungus.Copyright © 2019 Cho et al.


April 21, 2020  |  

Whole Genome Sequencing and Analysis of Chlorimuron-Ethyl Degrading Bacteria Klebsiella pneumoniae 2N3.

Klebsiella pneumoniae 2N3 is a strain of gram-negative bacteria that can degrade chlorimuron-ethyl and grow with chlorimuron-ethyl as the sole nitrogen source. The complete genome of Klebsiella pneumoniae 2N3 was sequenced using third generation high-throughput DNA sequencing technology. The genomic size of strain 2N3 was 5.32 Mb with a GC content of 57.33% and a total of 5156 coding genes and 112 non-coding RNAs predicted. Two hydrolases expressed by open reading frames (ORFs) 0934 and 0492 were predicted and experimentally confirmed by gene knockout to be involved in the degradation of chlorimuron-ethyl. Strains of ?ORF 0934, ?ORF 0492, and wild type (WT) reached their highest growth rates after 8-10 hours in incubation. The degradation rates of chlorimuron-ethyl by both ?ORF 0934 and ?ORF 0492 decreased in comparison to the WT during the first 8 hours in culture by 25.60% and 24.74%, respectively, while strains ?ORF 0934, ?ORF 0492, and the WT reached the highest degradation rates of chlorimuron-ethyl in 36 hours of 74.56%, 90.53%, and 95.06%, respectively. This study provides scientific evidence to support the application of Klebsiella pneumoniae 2N3 in bioremediation to control environmental pollution.


April 21, 2020  |  

Into the Thermus Mobilome: Presence, Diversity and Recent Activities of Insertion Sequences Across Thermus spp.

A high level of transposon-mediated genome rearrangement is a common trait among microorganisms isolated from thermal environments, probably contributing to the extraordinary genomic plasticity and horizontal gene transfer (HGT) observed in these habitats. In this work, active and inactive insertion sequences (ISs) spanning the sequenced members of the genus Thermus were characterized, with special emphasis on three T. thermophilus strains: HB27, HB8, and NAR1. A large number of full ISs and fragments derived from different IS families were found, concentrating within megaplasmids present in most isolates. Potentially active ISs were identified through analysis of transposase integrity, and domestication-related transposition events of ISTth7 were identified in laboratory-adapted HB27 derivatives. Many partial copies of ISs appeared throughout the genome, which may serve as specific targets for homologous recombination contributing to genome rearrangement. Moreover, recruitment of IS1000 32 bp segments as spacers for CRISPR sequence was identified, pointing to the adaptability of these elements in the biology of these thermophiles. Further knowledge about the activity and functional diversity of ISs in this genus may contribute to the generation of engineered transposons as new genetic tools, and enrich our understanding of the outstanding plasticity shown by these thermophiles.


April 21, 2020  |  

Reconstruction of the genomes of drug-resistant pathogens for outbreak investigation through metagenomic sequencing

Culture-independent methods that target genome fragments have shown promise in identifying certain pathogens, but the holy grail of comprehensive pathogen genome detection from microbiologically complex samples for subsequent forensic analyses remains a challenge. In the context of an investigation of a nosocomial outbreak, we used shotgun metagenomic sequencing of a human fecal sample and a neural network algorithm based on tetranucleotide frequency profiling to reconstruct microbial genomes and tested the same approach using rectal swabs from a second patient. The approach rapidly and readily detected the genome of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in the patient fecal specimen and in the rectal swab sample, achieving a level of strain resolution that was sufficient for confident transmission inference during a highly clonal outbreak. The analysis also detected previously unrecognized colonization of the patient by vancomycin-resistant Enterococcus faecium, another multidrug-resistant bacterium.IMPORTANCE The study results reported here perfectly demonstrate the power and promise of clinical metagenomics to recover genome sequences of important drug-resistant bacteria and to rapidly provide rich data that inform outbreak investigations and treatment decisions, independently of the need to culture the organisms.


April 21, 2020  |  

Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution.

We present reference-quality genome assembly and annotation for the stout camphor tree (Cinnamomum kanehirae (Laurales, Lauraceae)), the first sequenced member of the Magnoliidae comprising four orders (Laurales, Magnoliales, Canellales and Piperales) and over 9,000 species. Phylogenomic analysis of 13 representative seed plant genomes indicates that magnoliid and eudicot lineages share more recent common ancestry than monocots. Two whole-genome duplication events were inferred within the magnoliid lineage: one before divergence of Laurales and Magnoliales and the other within the Lauraceae. Small-scale segmental duplications and tandem duplications also contributed to innovation in the evolutionary history of Cinnamomum. For example, expansion of the terpenoid synthase gene subfamilies within the Laurales spawned the diversity of Cinnamomum monoterpenes and sesquiterpenes.


April 21, 2020  |  

Endogenous pararetrovirus sequences are widely present in Citrinae genomes.

Endogenous pararetroviruses (EPRVs) are characterized in several plant genomes and their biological effects have been reported. In this study, hundreds of EPRV segments were identified in six Citrinae genomes. A total of 1034 EPRV segments were identified in the genomes of sweet orange, 2036 in pummelo, 598 in clementine mandarin, 752 in Ichang papeda, 2060 in citron and 245 in atalantia. Genomic analysis indicated that EPRV segments tend to cluster as hot spots in the genomes, particularly on chromosome 2 and 5. Large numbers of simple repeats and transposable elements were identified in the 2-kb flanking regions of the EPRV segments. Comparative genomic analysis and PCR experiments showed that there are highly conserved EPRV segments and species-specific EPRV segments between the Citrinae genomes. Phylogenetic analysis suggested that the integration events of EPRVs could initiate in a common progenitor of Citrinae species and repeatedly occur during the Citrinae divergence.Copyright © 2018 Elsevier B.V. All rights reserved.


April 21, 2020  |  

Bioinformatic analysis of the complete genome sequence of Pectobacterium carotovorum subsp. brasiliense BZA12 and candidate effector screening

AbstractPectobacterium carotovorum subsp. brasiliense (Pcb) is a gram-negative, plant pathogenic bacterium of the soft rot Enterobacteriaceae (SRE) family. We present the complete genome sequence of Pcb strain BZA12, which reveals that Pcb strain BZA12 carries a single 4,924,809 bp chromosome with 51.97% GC content and comprises 4508 predicted protein-coding genes.Geneannotationofthese genes utilizedGO, KEGG,and COG databases.Incomparison withthree closely related soft-rot pathogens, strain BZA12 has 3797 gene families, among which 3107 gene families are identified as orthologous with those of both P. carotovorum subsp. carotovorum PCC21 and P. carotovorum subsp. odoriferum BCS7, as well as 36 putative Unique Gene Families. We selected five putative effectors from the BZA12 genome and transiently expressed them in Nicotiana benthamiana. Candidate effector A12GL002483 was localized in the cell nucleus and induced cell death. This study provides a foundation for a better understanding of the genomic structure and function of Pcb, particularly in the discovery of potential pathogenic factors and for the development of more effective strategies against this pathogen.


April 21, 2020  |  

Characterization of the genome of a Nocardia strain isolated from soils in the Qinghai-Tibetan Plateau that specifically degrades crude oil and of this biodegradation.

A strain of Nocardia isolated from crude oil-contaminated soils in the Qinghai-Tibetan Plateau degrades nearly all components of crude oil. This strain was identified as Nocardia soli Y48, and its growth conditions were determined. Complete genome sequencing showed that N. soli Y48 has a 7.3?Mb genome and many genes responsible for hydrocarbon degradation, biosurfactant synthesis, emulsification and other hydrocarbon degradation-related metabolisms. Analysis of the clusters of orthologous groups (COGs) and genomic islands (GIs) revealed that Y48 has undergone significant gene transfer events to adapt to changing environmental conditions (crude oil contamination). The structural features of the genome might provide a competitive edge for the survival of N. soli Y48 in oil-polluted environments and reflect the adaptation of coexisting bacteria to distinct nutritional niches.Copyright © 2018. Published by Elsevier Inc.


April 21, 2020  |  

Retrospective whole-genome sequencing analysis distinguished PFGE and drug-resistance-matched retail meat and clinical Salmonella isolates.

Non-typhoidal Salmonella is a leading cause of outbreak and sporadic-associated foodborne illnesses in the United States. These infections have been associated with a range of foods, including retail meats. Traditionally, pulsed-field gel electrophoresis (PFGE) and antibiotic susceptibility testing (AST) have been used to facilitate public health investigations of Salmonella infections. However, whole-genome sequencing (WGS) has emerged as an alternative tool that can be routinely implemented. To assess its potential in enhancing integrated surveillance in Pennsylvania, USA, WGS was used to directly compare the genetic characteristics of 7 retail meat and 43 clinical historic Salmonella isolates, subdivided into 3 subsets based on PFGE and AST results, to retrospectively resolve their genetic relatedness and identify antimicrobial resistance (AMR) determinants. Single nucleotide polymorphism (SNP) analyses revealed that the retail meat isolates within S. Heidelberg, S. Typhimurium var. O5- subset 1 and S. Typhimurium var. O5- subset 2 were separated from each primary PFGE pattern-matched clinical isolate by 6-12, 41-96 and 21-81 SNPs, respectively. Fifteen resistance genes were identified across all isolates, including fosA7, a gene only recently found in a limited number of Salmonella and a =95?%?phenotype to genotype correlation was observed for all tested antimicrobials. Moreover, AMR was primarily plasmid-mediated in S. Heidelberg and S. Typhimurium var. O5- subset 2, whereas AMR was chromosomally carried in S. Typhimurium var. O5- subset 1. Similar plasmids were identified in both the retail meat and clinical isolates. Collectively, these data highlight the utility of WGS in retrospective analyses and enhancing integrated surveillance for Salmonella from multiple sources.


April 21, 2020  |  

Comparative genomic analysis of Lactobacillus mucosae LM1 identifies potential niche-specific genes and pathways for gastrointestinal adaptation.

Lactobacillus mucosae is currently of interest as putative probiotics due to their metabolic capabilities and ability to colonize host mucosal niches. L. mucosae LM1 has been studied in its functions in cell adhesion and pathogen inhibition, etc. It demonstrated unique abilities to use energy from carbohydrate and non-carbohydrate sources. Due to these functions, we report the first complete genome sequence of an L. mucosae strain, L. mucosae LM1. Analysis of the pan-genome in comparison with closely-related Lactobacillus species identified a complete glycogen metabolism pathway, as well as folate biosynthesis, complementing previous proteomic data on the LM1 strain. It also revealed common and unique niche-adaptation genes among the various L. mucosae strains. The aim of this study was to derive genomic information that would reveal the probable mechanisms underlying the probiotic effect of L. mucosae LM1, and provide a better understanding of the nature of L. mucosae sp. Copyright © 2017 Elsevier Inc. All rights reserved.


April 21, 2020  |  

Population Genome Sequencing of the Scab Fungal Species Venturia inaequalis, Venturia pirina, Venturia aucupariae and Venturia asperata.

The Venturia genus comprises fungal species that are pathogens on Rosaceae host plants, including V. inaequalis and V. asperata on apple, V. aucupariae on sorbus and V. pirina on pear. Although the genetic structure of V. inaequalis populations has been investigated in detail, genomic features underlying these subdivisions remain poorly understood. Here, we report whole genome sequencing of 87 Venturia strains that represent each species and each population within V. inaequalis We present a PacBio genome assembly for the V. inaequalis EU-B04 reference isolate. The size of selected genomes was determined by flow cytometry, and varied from 45 to 93 Mb. Genome assemblies of V. inaequalis and V. aucupariae contain a high content of transposable elements (TEs), most of which belong to the Gypsy or Copia LTR superfamilies and have been inactivated by Repeat-Induced Point mutations. The reference assembly of V. inaequalis presents a mosaic structure of GC-equilibrated regions that mainly contain predicted genes and AT-rich regions, mainly composed of TEs. Six pairs of strains were identified as clones. Single-Nucleotide Polymorphism (SNP) analysis between these clones revealed a high number of SNPs that are mostly located in AT-rich regions due to misalignments and allowed determining a false discovery rate. The availability of these genome sequences is expected to stimulate genetics and population genomics research of Venturia pathogens. Especially, it will help understanding the evolutionary history of Venturia species that are pathogenic on different hosts, a history that has probably been substantially influenced by TEs.Copyright © 2019 Le Cam et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.