Menu
July 7, 2019  |  

Comparative evaluation of the genomes of three common Drosophila-associated bacteria.

Drosophila melanogaster is an excellent model to explore the molecular exchanges that occur between an animal intestine and associated microbes. Previous studies in Drosophila uncovered a sophisticated web of host responses to intestinal bacteria. The outcomes of these responses define critical events in the host, such as the establishment of immune responses, access to nutrients, and the rate of larval development. Despite our steady march towards illuminating the host machinery that responds to bacterial presence in the gut, there are significant gaps in our understanding of the microbial products that influence bacterial association with a fly host. We sequenced and characterized the genomes of three common Drosophila-associated microbes: Lactobacillus plantarum, Lactobacillus brevis and Acetobacter pasteurianus For each species, we compared the genomes of Drosophila-associated strains to the genomes of strains isolated from alternative sources. We found that environmental Lactobacillus strains readily associated with adult Drosophila and were similar to fly isolates in terms of genome organization. In contrast, we identified a strain of A. pasteurianus that apparently fails to associate with adult Drosophila due to an inability to grow on fly nutrient food. Comparisons between association competent and incompetent A. pasteurianus strains identified a short list of candidate genes that may contribute to survival on fly medium. Many of the gene products unique to fly-associated strains have established roles in the stabilization of host-microbe interactions. These data add to a growing body of literature that examines the microbial perspective of host-microbe relationships. © 2016. Published by The Company of Biologists Ltd.


July 7, 2019  |  

Complete genome sequence of Brevibacterium linens SMQ-1335.

Brevibacterium linens is one of the main bacteria found in the smear of surface-ripened cheeses. The genome of the industrial strain SMQ-1335 was sequenced using PacBio. It has 4,209,935 bp, a 62.6% G+C content, 3,848 open reading frames, and 61 structural RNAs. A new type I restriction-modification system was identified. Copyright © 2016 de Melo et al.


July 7, 2019  |  

Genome and plasmid analysis of blaIMP-4 -carrying Citrobacter freundii B38.

Sequencing of the blaIMP-4 -carrying C. freundii B38 using PacBio SMRT technique revealed that the genome contained a chromosome of 5,134,500 bp, and three plasmids, pOZ172 (127,005 bp), pOZ181 (277,592 bp), and pOZ182 (18,467 bp). Plasmid pOZ172 was identified as IncFIIY, like pP10164-NDM and pNDM-EcGN174. It carries a class 1 integron with four cassettes: blaIMP-4-qacG2-aacA4-aphA15, and a complete hybrid tni module (tniR-tniQ-tniB-tniA). The recombination of tniR from Tn402 (identical) with tniQBA (99%) from Tn5053 occurred within the res site of Tn402/5053. The Tn402/5053-like integron, named Tn6017, was inserted into Tn1722 at the res II site. The replication, partitioning and transfer systems of pOZ181 were similar to IncHI2 (e.g. R478) and contained a sul1-type class 1 integron with the cassette array: orf-dfrA1-orf-gcu37-aadA5 linked to an upstream Tn1696 tnpA-tnpR and to a downstream 3′ CS and ISCR1 A Tn2 transposon with a blaTEM-1b ß-lactamase was identified on pOZ182. Other interesting resistance determinants on the B38 chromosome included MDR efflux pumps, AmpC ß-lactamase, and resistances to Cu, Ag, As, and Zn. This is the first report of a complete tni module linked to a blaIMP- 4 carrying class 1 integron, and together with other recently reported non-sul1 integrons, represents the emergence of a distinct evolutionary lineage of class 1 integrons lacking a 3′ -CS (qacE?1-sul1). The unique cassette array, complete tni module of Tn6017, and incompatibility group of pOZ172 suggests a different blaIMP-4 evolutionary pathway in C. freundii B38 compared to other blaIMP-4 foundin Gram-negative bacteria in the Western Pacific Region. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Comparative genomics reveals Lysinibacillus sphaericus group comprises a novel species.

Early in the 1990s, it was recognized that Lysinibacillus sphaericus, one of the most popular and effective entomopathogenic bacteria, was a highly heterogeneous group. Many authors have even proposed it comprises more than one species, but the lack of phenotypic traits that guarantee an accurate differentiation has not allowed this issue to be clarified. Now that genomic technologies are rapidly advancing, it is possible to address the problem from a whole genome perspective, getting insights into the phylogeny, evolutive history and biology itself.The genome of the Colombian strain L. sphaericus OT4b.49 was sequenced, assembled and annotated, obtaining 3 chromosomal contigs and no evidence of plasmids. Using these sequences and the 13 other L. sphaericus genomes available on the NCBI database, we carried out comparative genomic analyses that included whole genome alignments, searching for mobile elements, phylogenomic metrics (TETRA, ANI and in-silico DDH) and pan-genome assessments. The results support the hypothesis about this species as a very heterogeneous group. The entomopathogenic lineage is actually a single and independent species with 3728 core genes and 2153 accessory genes, whereas each non-toxic strain seems to be a separate species, though without a clear circumscription. Toxin-encoding genes, binA, B and mtx1, 2, 3 could be acquired via horizontal gene transfer in a single evolutionary event. The non-toxic strain OT4b.31 is the most related with the type strain KCTC 3346.The current L. sphaericus is actually a sensu lato due to a sub-estimation of diversity accrued using traditional non-genomics based classification strategies. The toxic lineage is the most studied with regards to its larvicidal activity, which is a greatly conserved trait among these strains and thus, their differentiating feature. Further studies are needed in order to establish a univocal classification of the non-toxic strains that, according to our results, seem to be a paraphyletic group.


July 7, 2019  |  

Genomic recombination leading to decreased virulence of group B Streptococcus in a mouse model of adult invasive disease.

Adult invasive disease caused by Group B Streptococcus (GBS) is increasing worldwide. Whole-genome sequencing (WGS) now permits rapid identification of recombination events, a phenomenon that occurs frequently in GBS. Using WGS, we described that strain NGBS375, a capsular serotype V GBS isolate of sequence type (ST)297, has an ST1 genomic background but has acquired approximately 300 kbp of genetic material likely from an ST17 strain. Here, we examined the virulence of this strain in an in vivo model of GBS adult invasive infection. The mosaic ST297 strain showed intermediate virulence, causing significantly less systemic infection and reduced mortality than a more virulent, serotype V ST1 isolate. Bacteremia induced by the ST297 strain was similar to that induced by a serotype III ST17 strain, which was the least virulent under the conditions tested. Yet, under normalized bacteremia levels, the in vivo intrinsic capacity to induce the production of pro-inflammatory cytokines was similar between the ST297 strain and the virulent ST1 strain. Thus, the diminished virulence of the mosaic strain may be due to reduced capacity to disseminate or multiply in blood during a systemic infection which could be mediated by regulatory factors contained in the recombined region.


July 7, 2019  |  

Co-infection and emergence of rifamycin resistance during a recurrent Clostridium difficile infection.

Clostridium difficile (Peptoclostridium difficile) is a common health care associated infection with a disproportionately high incidence in elderly patients. Disease symptoms range from mild diarrhoea through to life threatening pseudomembranous colitis. Around 20% of patients may suffer recurrent disease which often requires re-hospitalisation of patients.C. difficile was isolated from stool samples from a patient with two recurrent C. difficile infections. PCR-ribotyping, whole genome sequencing and phenotypic assays were used to characterise these isolates.Genotypic and phenotypic screening of C. difficile isolates revealed multiple PCR-ribotypes present, and the emergence of rifamycin resistance during the infection cycle.Understanding both the clinical and bacterial factors that contribute to the course of recurrent infection could inform strategies to reduce recurrence. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Active and adaptive Legionella CRISPR-Cas reveals a recurrent challenge to the pathogen.

Clustered regularly interspaced short palindromic repeats with CRISPR-associated gene (CRISPR-Cas) systems are widely recognized as critical genome defense systems that protect microbes from external threats such as bacteriophage infection. Several isolates of the intracellular pathogen Legionella pneumophila possess multiple CRISPR-Cas systems (type I-C, type I-F and type II-B), yet the targets of these systems remain unknown. With the recent observation that at least one of these systems (II-B) plays a non-canonical role in supporting intracellular replication, the possibility remained that these systems are vestigial genome defense systems co-opted for other purposes. Our data indicate that this is not the case. Using an established plasmid transformation assay, we demonstrate that type I-C, I-F and II-B CRISPR-Cas provide protection against spacer targets. We observe efficient laboratory acquisition of new spacers under ‘priming’ conditions, in which initially incomplete target elimination leads to the generation of new spacers and ultimate loss of the invasive DNA. Critically, we identify the first known target of L. pneumophila CRISPR-Cas: a 30?kb episome of unknown function whose interbacterial transfer is guarded against by CRISPR-Cas. We provide evidence that the element can subvert CRISPR-Cas by mutating its targeted sequences – but that primed spacer acquisition may limit this mechanism of escape. Rather than generally impinging on bacterial fitness, this element drives a host specialization event – with improved fitness in Acanthamoeba but a reduced ability to replicate in other hosts and conditions. These observations add to a growing body of evidence that host range restriction can serve as an existential threat to L. pneumophila in the wild.© 2016 The Authors Cellular Microbiology Published by John Wiley & Sons Ltd.


July 7, 2019  |  

Completed genome sequences of strains from 36 serotypes of Salmonella.

We report here the completed closed genome sequences of strains representing 36 serotypes of Salmonella. These genome sequences will provide useful references for understanding the genetic variation between serotypes, particularly as references for mapping of raw reads or to create assemblies of higher quality, as well as to aid in studies of comparative genomics of Salmonella.© Crown copyright 2018.


July 7, 2019  |  

Draft genome sequence of Bacillus sp. strain UFRGS-B20, a hydrocarbon degrader.

Bacillus sp. strain UFRGS-B20 was isolated in 2012 from Brazilian land-farming soil contaminated with petrochemical oily sludge. This strain was subjected to hydrocarbon biodegradation tests, showing degradation rates of up to 60%. Here, we present the 6.82-Mb draft genome sequence of the strain, which contains 2,178 proteins with functional assignments.


July 7, 2019  |  

Genome sequences of five Mycobacterium bovis strains isolated from farmed animals and wildlife in Canada.

Mycobacterium bovis is the causative agent of bovine tuberculosis, an infectious disease that affects both animals and humans and thus presents a risk to public health and the livestock industry. Here, we report the genome sequences of five Mycobacterium bovis strains that represent major genotype clusters observed in farmed animals and wildlife in Canada.© Crown copyright 2018.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.