April 21, 2020  |  

One Aeromonas salmonicida subsp. salmonicida isolate with a pAsa5 variant bearing antibiotic resistance and a pRAS3 variant making a link with a swine pathogen.

The Gram-negative bacterium Aeromonas salmonicida subsp. salmonicida is an aquatic pathogen which causes furunculosis to salmonids, especially in fish farms. The emergence of strains of this bacterium exhibiting antibiotic resistance is increasing, limiting the effectiveness of antibiotherapy as a treatment against this worldwide disease. In the present study, we discovered an isolate of A. salmonicida subsp. salmonicida that harbors two novel plasmids variants carrying antibiotic resistance genes. The use of long-read sequencing (PacBio) allowed us to fully characterize those variants, named pAsa5-3432 and pRAS3-3432, which both differ from their classic counterpart through their content in mobile genetic elements. The plasmid pAsa5-3432 carries a new multidrug region composed of multiple mobile genetic elements, including a Class 1 integron similar to an integrated element of Salmonella enterica. With this new region, probably acquired through plasmid recombination, pAsa5-3432 is the first reported plasmid of this bacterium that bears both an essential virulence factor (the type three secretion system) and multiple antibiotic resistance genes. As for pRAS3-3432, compared to the classic pRAS3, it carries a new mobile element that has only been identified in Chlamydia suis. Hence, with the identification of those two novel plasmids harboring mobile genetic elements that are normally encountered in other bacterial species, the present study puts emphasis on the important impact of mobile genetic elements in the genomic plasticity of A. salmonicida subsp. salmonicida and suggests that this aquatic bacterium could be an important reservoir of antibiotic resistance genes that can be exchanged with other bacteria, including human and animal pathogens. Copyright © 2019 Elsevier B.V. All rights reserved.


April 21, 2020  |  

Whole Genome Sequencing of the Mutamouse Model Reveals Strain- and Colony-Level Variation, and Genomic Features of the Transgene Integration Site.

The MutaMouse transgenic rodent model is widely used for assessing in vivo mutagenicity. Here, we report the characterization of MutaMouse’s whole genome sequence and its genetic variants compared to the C57BL/6 reference genome. High coverage (>50X) next-generation sequencing (NGS) of whole genomes from multiple MutaMouse animals from the Health Canada (HC) colony showed ~5 million SNVs per genome, ~20% of which are putatively novel. Sequencing of two animals from a geographically separated colony at Covance indicated that, over the course of 23 years, each colony accumulated 47,847 (HC) and 17,677 (Covance) non-parental homozygous single nucleotide variants. We found no novel nonsense or missense mutations that impair the MutaMouse response to genotoxic agents. Pairing sequencing data with array comparative genomic hybridization (aCGH) improved the accuracy and resolution of copy number variants (CNVs) calls and identified 300 genomic regions with CNVs. We also used long-read sequence technology (PacBio) to show that the transgene integration site involved a large deletion event with multiple inversions and rearrangements near a retrotransposon. The MutaMouse genome gives important genetic context to studies using this model, offers insight on the mechanisms of structural variant formation, and contributes a framework to analyze aCGH results alongside NGS data.


April 21, 2020  |  

Urinary tract colonization is enhanced by a plasmid that regulates uropathogenic Acinetobacter baumannii chromosomal genes.

Multidrug resistant (MDR) Acinetobacter baumannii poses a growing threat to global health. Research on Acinetobacter pathogenesis has primarily focused on pneumonia and bloodstream infections, even though one in five A. baumannii strains are isolated from urinary sites. In this study, we highlight the role of A. baumannii as a uropathogen. We develop the first A. baumannii catheter-associated urinary tract infection (CAUTI) murine model using UPAB1, a recent MDR urinary isolate. UPAB1 carries the plasmid pAB5, a member of the family of large conjugative plasmids that represses the type VI secretion system (T6SS) in multiple Acinetobacter strains. pAB5 confers niche specificity, as its carriage improves UPAB1 survival in a CAUTI model and decreases virulence in a pneumonia model. Comparative proteomic and transcriptomic analyses show that pAB5 regulates the expression of multiple chromosomally-encoded virulence factors besides T6SS. Our results demonstrate that plasmids can impact bacterial infections by controlling the expression of chromosomal genes.


September 22, 2019  |  

Composition and pathogenic potential of a microbial bioremediation product used for crude oil degradation.

A microbial bioremediation product (MBP) used for large-scale oil degradation was investigated for microbial constituents and possible pathogenicity. Aerobic growth on various media yielded >108 colonies mL-1. Full-length 16S rDNA sequencing and fatty acid profiling from morphologically distinct colonies revealed =13 distinct genera. Full-length 16S rDNA library sequencing, by either Sanger or long-read PacBio technology, suggested that up to 21% of the MBP was composed of Arcobacter. Other high abundance microbial constituents (>6%) included the genera Proteus, Enterococcus, Dysgonomonas and several genera in the order Bacteroidales. The MBP was most susceptible to ciprofloxacin, doxycycline, gentamicin, and meropenam. MBP exposure of human HT29 and A549 cells caused significant cytotoxicity, and bacterial growth and adherence. An acellular MBP filtrate was also cytotoxic to HT29, but not A549. Both MBP and filtrate exposures elevated the neutrophil chemoattractant IL-8. In endotracheal murine exposures, bacterial pulmonary clearance was complete after one-week. Elevation of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-a, and chemokines KC and MCP-1 occurred between 2h and 48h post-exposure, followed by restoration to baseline levels at 96h. Cytokine/chemokine signalling was accompanied by elevated blood neutrophils and monocytes at 4h and 48h, respectively. Peripheral acute phase response markers were maximal at 24h. All indicators examined returned to baseline values by 168h. In contrast to HT29, but similar to A549 observations, MBP filtrate did not induce significant murine effects with the indicators examined. The results demonstrated the potentially complex nature of MBPs and transient immunological effects during exposure. Products containing microbes should be scrutinized for pathogenic components and subjected to characterisation and quality validation prior to commercial release.


September 22, 2019  |  

Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR.

Embryonal tumors with multilayered rosettes (ETMRs) are rare, deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified, in all cases, C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors, cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2, a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic, brain-specific DNMT3B isoform.


September 22, 2019  |  

Sequence motifs associated with paternal transmission of mitochondrial DNA in the horse mussel, Modiolus modiolus (Bivalvia: Mytilidae).

In the majority of metazoans paternal mitochondria represent evolutionary dead-ends. In many bivalves, however, this paradigm does not hold true; both maternal and paternal mitochondria are inherited. Herein, we characterize maternal and paternal mitochondrial control regions of the horse mussel, Modiolus modiolus (Bivalvia: Mytilidae). The maternal control region is 808bp long, while the paternal control region is longer at 2.3kb. We hypothesize that the size difference is due to a combination of repeated duplications within the control region of the paternal mtDNA genome, as well as an evolutionarily ancient recombination event between two sex-associated mtDNA genomes that led to the insertion of a second control region sequence in the genome that is now transmitted via males. In a comparison to other mytilid male control regions, we identified two evolutionarily Conserved Motifs, CMA and CMB, associated with paternal transmission of mitochondrial DNA. CMA is characterized by a conserved purine/pyrimidine pattern, while CMB exhibits a specific 13bp nucleotide string within a stem and loop structure. The identification of motifs CMA and CMB in M. modiolus extends our understanding of Sperm Transmission Elements (STEs) that have recently been identified as being associated with the paternal transmission of mitochondria in marine bivalves. Copyright © 2017 Elsevier B.V. All rights reserved.


September 22, 2019  |  

PHACTR1 splicing isoforms and eQTLs in atherosclerosis-relevant human cells.

Genome-wide association studies (GWAS) have identified a variant (rs9349379) at the phosphatase and actin regulator 1 (PHACTR1) locus that is associated with coronary artery disease (CAD). The same variant is also an expression quantitative trait locus (eQTL) for PHACTR1 in human coronary arteries (hCA). Here, we sought to characterize PHACTR1 splicing pattern in atherosclerosis-relevant human cells. We also explored how rs9349379 modulates the expression of the different PHACTR1 splicing isoforms.We combined rapid amplification of cDNA ends (RACE) with next-generation long-read DNA sequencing to discover all PHACTR1 transcripts in many human tissues and cell types. We measured PHACTR1 transcripts by qPCR to identify transcript-specific eQTLs.We confirmed a brain-specific long transcript, a short transcript expressed in monocytes and four intermediate transcripts that are different due to alternative splicing of two in-frame exons. In contrast to a previous report, we confirmed that the PHACTR1 protein is present in vascular smooth muscle cells. In 158 hCA from our collection and the GTEx dataset, rs9349379 was only associated with the expression levels of the intermediate PHACTR1 transcripts.Our comprehensive transcriptomic profiling of PHACTR1 indicates that this gene encodes six main transcripts. Five of them are expressed in hCA, where atherosclerotic plaques develop. In this tissue, genotypes at rs9349379 are associated with the expression of the intermediate transcripts, but not the immune-specific short transcript. This result suggests that rs9349379 may in part influence CAD by modulating the expression of intermediate PHACTR1 transcripts in endothelial or vascular smooth muscle cells found in hCA.


September 22, 2019  |  

Re-classification of Clavibacter michiganensis subspecies on the basis of whole-genome and multi-locus sequence analyses.

Although the genus Clavibacter was originally proposed to accommodate all phytopathogenic coryneform bacteria containing B2? diaminobutyrate in the peptidoglycan, reclassification of all but one species into other genera has resulted in the current monospecific status of the genus. The single species in the genus, Clavibacter michiganensis, has multiple subspecies, which are all highly host-specific plant pathogens. Whole genome analysis based on average nucleotide identity and digital DNA-DNA hybridization as well as multi-locus sequence analysis (MLSA) of seven housekeeping genes support raising each of the C. michiganensis subspecies to species status. On the basis of whole genome and MLSA data, we propose the establishment of two new species and three new combinations: Clavibacter capsici sp. nov., comb. nov. and Clavibacter tessellarius sp. nov., comb. nov., and Clavibacter insidiosus comb. nov., Clavibacter nebraskensis comb. nov. and Clavibacter sepedonicus comb. nov.


September 22, 2019  |  

Chinook salmon (Oncorhynchus tshawytscha) genome and transcriptome.

When unifying genomic resources among studies and comparing data between species, there is often no better resource than a genome sequence. Having a reference genome for the Chinook salmon (Oncorhynchus tshawytscha) will enable the extensive genomic resources available for Pacific salmon, Atlantic salmon, and rainbow trout to be leveraged when asking questions related to the Chinook salmon. The Chinook salmon’s wide distribution, long cultural impact, evolutionary history, substantial hatchery production, and recent wild-population decline make it an important research species. In this study, we sequenced and assembled the genome of a Chilliwack River Hatchery female Chinook salmon (gynogenetic and homozygous at all loci). With a reference genome sequence, new questions can be asked about the nature of this species, and its role in a rapidly changing world.


September 22, 2019  |  

Inferring the minimal genome of Mesoplasma florum by comparative genomics and transposon mutagenesis.

The creation and comparison of minimal genomes will help better define the most fundamental mechanisms supporting life. Mesoplasma florum is a near-minimal, fast-growing, nonpathogenic bacterium potentially amenable to genome reduction efforts. In a comparative genomic study of 13 M. florum strains, including 11 newly sequenced genomes, we have identified the core genome and open pangenome of this species. Our results show that all of the strains have approximately 80% of their gene content in common. Of the remaining 20%, 17% of the genes were found in multiple strains and 3% were unique to any given strain. On the basis of random transposon mutagenesis, we also estimated that ~290 out of 720 genes are essential for M. florum L1 in rich medium. We next evaluated different genome reduction scenarios for M. florum L1 by using gene conservation and essentiality data, as well as comparisons with the first working approximation of a minimal organism, Mycoplasma mycoides JCVI-syn3.0. Our results suggest that 409 of the 473 M. mycoides JCVI-syn3.0 genes have orthologs in M. florum L1. Conversely, 57 putatively essential M. florum L1 genes have no homolog in M. mycoides JCVI-syn3.0. This suggests differences in minimal genome compositions, even for these evolutionarily closely related bacteria. IMPORTANCE The last years have witnessed the development of whole-genome cloning and transplantation methods and the complete synthesis of entire chromosomes. Recently, the first minimal cell, Mycoplasma mycoides JCVI-syn3.0, was created. Despite these milestone achievements, several questions remain to be answered. For example, is the composition of minimal genomes virtually identical in phylogenetically related species? On the basis of comparative genomics and transposon mutagenesis, we investigated this question by using an alternative model, Mesoplasma florum, that is also amenable to genome reduction efforts. Our results suggest that the creation of additional minimal genomes could help reveal different gene compositions and strategies that can support life, even within closely related species.


September 22, 2019  |  

Strain-level genetic diversity of Methylophaga nitratireducenticrescens confers plasticity to denitrification capacity in a methylotrophic marine denitrifying biofilm.

The biofilm of a methanol-fed, fluidized denitrification system treating a marine effluent is composed of multi-species microorganisms, among which Hyphomicrobium nitrativorans NL23 and Methylophaga nitratireducenticrescens JAM1 are the principal bacteria involved in the denitrifying activities. Strain NL23 can carry complete nitrate (NO[Formula: see text]) reduction to N2, whereas strain JAM1 can perform 3 out of the 4 reduction steps. A small proportion of other denitrifiers exists in the biofilm, suggesting the potential plasticity of the biofilm in adapting to environmental changes. Here, we report the acclimation of the denitrifying biofilm from continuous operating mode to batch operating mode, and the isolation and characterization from the acclimated biofilm of a new denitrifying bacterial strain, named GP59.The denitrifying biofilm was batch-cultured under anoxic conditions. The acclimated biofilm was plated on Methylophaga specific medium to isolate denitrifying Methylophaga isolates. Planktonic cultures of strains GP59 and JAM1 were performed, and the growth and the dynamics of NO[Formula: see text], nitrite (NO[Formula: see text]) and N2O were determined. The genomes of strains GP59 and JAM1 were sequenced and compared. The transcriptomes of strains GP59 and JAM1 were derived from anoxic cultures.During batch cultures of the biofilm, we observed the disappearance of H. nitrativorans NL23 without affecting the denitrification performance. From the acclimated biofilm, we isolated strain GP59 that can perform, like H. nitrativorans NL23, the complete denitrification pathway. The GP59 cell concentration in the acclimated biofilm was 2-3 orders of magnitude higher than M. nitratireducenticrescens JAM1 and H. nitrativorans NL23. Genome analyses revealed that strain GP59 belongs to the species M. nitratireducenticrescens. The GP59 genome shares more than 85% of its coding sequences with those of strain JAM1. Based on transcriptomic analyses of anoxic cultures, most of these common genes in strain GP59 were expressed at similar level than their counterparts in strain JAM1. In contrast to strain JAM1, strain GP59 cannot reduce NO[Formula: see text] under oxic culture conditions, and has a 24-h lag time before growth and NO[Formula: see text] reduction start to occur in anoxic cultures, suggesting that both strains regulate differently the expression of their denitrification genes. Strain GP59 has the ability to reduce NO[Formula: see text] as it carries a gene encoding a NirK-type NO[Formula: see text] reductase. Based on the CRISPR sequences, strain GP59 did not emerge from strain JAM1 during the biofilm batch cultures but rather was present in the original biofilm and was enriched during this process.These results reinforce the unique trait of the species M. nitratireducenticrescens among the Methylophaga genus as facultative anaerobic bacterium. These findings also showed the plasticity of denitrifying population of the biofilm in adapting to anoxic marine environments of the bioreactor.


September 22, 2019  |  

Redefinition and unification of the SXT/R391 family of integrative and conjugative elements.

Integrative and conjugative elements (ICEs) of the SXT/R391 family are key drivers of the spread of antibiotic resistance in Vibrio cholerae, the infectious agent of cholera, and other pathogenic bacteria. The SXT/R391 family of ICEs was defined based on the conservation of a core set of 52 genes and site-specific integration into the 5′ end of the chromosomal gene prfC Hence, the integrase gene int has been intensively used as a marker to detect SXT/R391 ICEs in clinical isolates. ICEs sharing most core genes but differing by their integration site and integrase gene have been recently reported and excluded from the SXT/R391 family. Here we explored the prevalence and diversity of atypical ICEs in GenBank databases and their relationship with typical SXT/R391 ICEs. We found atypical ICEs in V. cholerae isolates that predate the emergence and expansion of typical SXT/R391 ICEs in the mid-1980s in seventh-pandemic toxigenic V. cholerae strains O1 and O139. Our analyses revealed that while atypical ICEs are not associated with antibiotic resistance genes, they often carry cation efflux pumps, suggesting heavy metal resistance. Atypical ICEs constitute a polyphyletic group likely because of occasional recombination events with typical ICEs. Furthermore, we show that the alternative integration and excision genes of atypical ICEs remain under the control of SetCD, the main activator of the conjugative functions of SXT/R391 ICEs. Together, these observations indicate that substitution of the integration/excision module and change of specificity of integration do not preclude atypical ICEs from inclusion into the SXT/R391 family.IMPORTANCEVibrio cholerae is the causative agent of cholera, an acute intestinal infection that remains to this day a world public health threat. Integrative and conjugative elements (ICEs) of the SXT/R391 family have played a major role in spreading antimicrobial resistance in seventh-pandemic V. cholerae but also in several species of Enterobacteriaceae Most epidemiological surveys use the integrase gene as a marker to screen for SXT/R391 ICEs in clinical or environmental strains. With the recent reports of closely related elements that carry an alternative integrase gene, it became urgent to investigate whether ICEs that have been left out of the family are a liability for the accuracy of such screenings. In this study, based on comparative genomics, we broaden the SXT/R391 family of ICEs to include atypical ICEs that are often associated with heavy metal resistance. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

A pathogenesis-related 10 protein catalyzes the final step in thebaine biosynthesis.

The ultimate step in the formation of thebaine, a pentacyclic opiate alkaloid readily converted to the narcotic analgesics codeine and morphine in the opium poppy, has long been presumed to be a spontaneous reaction. We have detected and purified a novel enzyme from opium poppy latex that is capable of the efficient formation of thebaine from (7S)-salutaridinol 7-O-acetate at the expense of labile hydroxylated byproducts, which are preferentially produced by spontaneous allylic elimination. Remarkably, thebaine synthase (THS), a member of the pathogenesis-related 10 protein (PR10) superfamily, is encoded within a novel gene cluster in the opium poppy genome that also includes genes encoding the four biosynthetic enzymes immediately upstream. THS is a missing component that is crucial to the development of fermentation-based opiate production and dramatically improves thebaine yield in engineered yeast.


September 22, 2019  |  

Genomic comparison of highly virulent, moderately virulent, and avirulent strains from a genetically closely-related MRSA ST239 sub-lineage provides insights into pathogenesis.

The genomic comparison of virulent (TW20), moderately virulent (CMRSA6/CMRSA3), and avirulent (M92) strains from a genetically closely-related MRSA ST239 sub-lineage revealed striking similarities in their genomes and antibiotic resistance profiles, despite differences in virulence and pathogenicity. The main differences were in the spa gene (coding for staphylococcal protein A), lpl genes (coding for lipoprotein-like membrane proteins), cta genes (genes involved in heme synthesis), and the dfrG gene (coding for a trimethoprim-resistant dihydrofolate reductase), as well as variations in the presence or content of some prophages and plasmids, which could explain the virulence differences of these strains. TW20 was positive for all genetic traits tested, compared to CMRSA6, CMRSA3, and M92. The major components differing among these strains included spa and lpl with TW20 carrying both whereas CMRSA6/CMRSA3 carry spa identical to TW20 but have a disrupted lpl. M92 is devoid of both these traits. Considering the role played by these components in innate immunity and virulence, it is predicted that since TW20 has both the components intact and functional, these traits contribute to its pathogenesis. However, CMRSA6/CMRSA3 are missing one of these components, hence their intermediately virulent nature. On the contrary, M92 is completely devoid of both the spa and lpl genes and is avirulent. Mobile genetic elements play a potential role in virulence. TW20 carries three prophages (?Sa6, ?Sa3, and ?SPß-like), a pathogenicity island and two plasmids. CMRSA6, CMRSA3, and M92 contain variations in one or more of these components. The virulence associated genes in these components include staphylokinase, entertoxins, antibiotic/antiseptic/heavy metal resistance and bacterial persistence. Additionally, there are many hypothetical proteins (present with variations among strains) with unknown function in these mobile elements which could be making an important contribution in the virulence of these strains. The above mentioned repertoire of virulence components in TW20 likely contributes to its increased virulence, while the absence and/or modification of one or more of these components in CMRSA6/CMRSA3 and M92 likely affects the virulence of the strains.


September 22, 2019  |  

Human copy number variants are enriched in regions of low mappability.

Copy number variants (CNVs) are known to affect a large portion of the human genome and have been implicated in many diseases. Although whole-genome sequencing (WGS) can help identify CNVs, most analytical methods suffer from limited sensitivity and specificity, especially in regions of low mappability. To address this, we use PopSV, a CNV caller that relies on multiple samples to control for technical variation. We demonstrate that our calls are stable across different types of repeat-rich regions and validate the accuracy of our predictions using orthogonal approaches. Applying PopSV to 640 human genomes, we find that low-mappability regions are approximately 5 times more likely to harbor germline CNVs, in stark contrast to the nearly uniform distribution observed for somatic CNVs in 95 cancer genomes. In addition to known enrichments in segmental duplication and near centromeres and telomeres, we also report that CNVs are enriched in specific types of satellite and in some of the most recent families of transposable elements. Finally, using this comprehensive approach, we identify 3455 regions with recurrent CNVs that were missing from existing catalogs. In particular, we identify 347 genes with a novel exonic CNV in low-mappability regions, including 29 genes previously associated with disease.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.