X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, February 26, 2021

Copy-number variant detection with PacBio long reads

Long-read sequencing of diverse humans has revealed more than 20,000 insertion, deletion, and inversion structural variants spanning more than 12 Mb in a healthy human genome. Most of these variants are too large to detect with short reads and too small for array comparative genome hybridization (aCGH). While the standard approaches to calling structural variants with long reads thrive in the 50 bp to 10 kb size range, they tend to miss exactly the large (>50 kb) copy-number variants that are called more readily with aCGH. Standard algorithms rely on reference-based mapping of reads that fully span a variant or…

Read More »

Friday, February 26, 2021

Comprehensive variant detection in a human genome with highly accurate long reads

Introduction: Long-read sequencing has been applied successfully to assemble genomes and detect structural variants. However, due to high raw-read error rates (10-15%), it has remained difficult to call small variants from long reads. Recent improvements in library preparation and sequencing chemistry have increased length, accuracy, and throughput of PacBio circular consensus sequencing (CCS) reads, resulting in 15-20kb reads with average read quality above 99%. Materials and Methods: We sequenced a library from human reference sample HG002 to 18-fold coverage on the PacBio Sequel II with two SMRT Cells 8M. The CCS algorithm was used to generate highly accurate (average 99.9%)…

Read More »

Friday, February 26, 2021

Comprehensive variant detection in a human genome with highly accurate long reads

Introduction: Long-read sequencing has revealed more than 20,000 structural variants spanning over 12 Mb in a healthy human genome. Short-read sequencing fails to detect most structural variants but has remained the more effective approach for small variants, due to 10-15% error rates in long reads, and copy-number variants (CNVs), due to lack of effective long-read variant callers. The development of PacBio highly accurate long reads (HiFi reads) with read lengths of 10-25 kb and quality >99% presents the opportunity to capture all classes of variation with one approach.Methods: We sequence the Genome in a Bottle benchmark sample HG002 and an…

Read More »

Saturday, February 20, 2021

Whitepaper: Structural variation in the human genome

Structural variation accounts for much of the variation among human genomes. Structural variants of all types are known to cause Mendelian disease and contribute to complex disease. Learn how long-read sequencing is enabling detection of the full spectrum of structural variants to advance the study of human disease, evolution and genetic diversity.

Read More »

Saturday, February 20, 2021

Application Brief: Variant detection using whole genome sequencing with HiFi reads – Best Practices

With highly accurate long reads (HiFi reads) from the Sequel II System, powered by Single Molecule, Real-Time (SMRT) Sequencing technology, you can comprehensively detect variants in a human genome. HiFi reads provide high precision and recall for single nucleotide variants (SNVs), indels, structural variants (SVs), and copy number variants (CNVs), including in difficult-to-map repetitive regions.

Read More »

Saturday, February 20, 2021

Application Brief: Structural variant detection using whole genome sequencing – Best Practices

With the Sequel II System powered by Single Molecule, Real-Time (SMRT) Sequencing technology and SMRT Link v8.0, you can affordably and effectively detect structural variants (SVs), copy number variants, and large indels ranging in size from tens to thousands of base pairs. PacBio long-read whole genome sequencing comprehensively resolves variants in an individual with high precision and recall. For population genetics and pedigree studies, joint calling powers rapid discovery of common variants within a sample cohort.

Read More »

Saturday, February 20, 2021

Application Note: Considerations for using the low and ultra-low DNA input workflows for whole genome sequencing

As the foundation for scientific discoveries in genetic diversity, sequencing data must be accurate and complete. With highly accurate long-read sequencing, or HiFi sequencing, there is no longer a compromise between read length and accuracy. HiFi sequencing enables some of the highest quality de novo genome assemblies available today as well as comprehensive variant detection in human samples. PacBio HiFi libraries constructed using our standard library workflows require at least 3 µg of DNA input per 1 Gb of genome length, or ~10 µg for a human sample. For some samples it is not possible to extract this amount of…

Read More »

Friday, February 5, 2021

Podcast: Marc Salit discusses creating the foundation of genomics

Marc Salit is the leader of the Genome Scale Measurement Group at the National Institute of Standards and Technology or NIST. In this Mendelspod podcast, he explains how NIST played a pivotal, foundational role in enabling the ‘Century of Physics.’ Now Marc and NIST are looking for the right set of standards to enable the already-upon-us “Century of Biology.” The human reference genome is an example of a standard that Marc and his team are developing. Currently they are piloting what they call “Genome in a Bottle,” a physical reference standard to which all other human genomes can be measured.…

Read More »

Friday, February 5, 2021

ASHG Virtual Poster: Effect of coverage depth and haplotype phasing on structural variant detection with PacBio long reads

PacBio bioinformatician Aaron Wenger presents this ASHG 2016 poster demonstrating human structural variation detection at varying coverage levels with SMRT Sequencing on the Sequel System. Results were compared to truth sets for well-characterized genomes. Results indicate that even low coverage of SMRT Sequencing makes it possible to detect hundreds of SVs that are missed in high-coverage short-read sequencing data.

Read More »

Friday, February 5, 2021

ASHG PacBio Workshop: A future of high-quality genomes, transcriptomes, and epigenomes

Jonas Korlach spoke about recent SMRT Sequencing updates, such as latest Sequel System chemistry release (1.2.1) and updates to the Integrative Genomics Viewer that’s now update optimized for PacBio data. He presented the recent data release of structural variation detected in the NA12878 genome, including many more insertions and deletions than short-read-based technologies were able to find.

Read More »

Friday, February 5, 2021

ASHG PacBio Workshop: PacBio product updates and roadmap – announcing the release of new chemistry and software

In this ASHG workshop presentation , Jonas Korlach, CSO of PacBio, walked attendees through recent product updates and the coming technology roadmap. The Sequel System 6.0 release offered major improvements to accuracy, throughput, structural variant calling, and large-insert libraries, he said, showing examples of 35 kb libraries. Looking ahead, Korlach said that the V2 express library preparation product should be available early in 2019, with the new 8M SMRT Cell being introduced sometime later.

Read More »

Friday, February 5, 2021

Webinar: Variant calling and de novo genome assembly with PacBio HiFi reads

In this webinar, Sarah Kingan, Staff Scientist, PacBio, presents recent work on de novo genome assembly using PacBio HiFi reads. She highlights the benefits of HiFi data for base level accuracy, haplotype phasing, and ease of computation. And in samples ranging from human to plants, she benchmarks various tools for HiFi assembly and phasing, including the newly extended FALCON-Unzip assembler. Subsequently, Andrew Carroll, Genomics Product Lead, GoogleAI, explores how the GoogleAI team retrained DeepVariant, a highly accurate SNP and Indel caller, for PacBio HiFi data. The resulting DeepVariant models achieve comparable accuracies to short-read methods with the additional benefit of…

Read More »

1 2 3 4 5

Subscribe for blog updates:

Archives