Structural variation accounts for much of the variation among human genomes. Structural variants of all types are known to cause Mendelian disease and contribute to complex disease. Learn how long-read sequencing is enabling detection of the full spectrum of structural variants to advance the study of human disease, evolution and genetic diversity.
Explore how long-read sequencing enables solving of rare and mendelian diseases.
Interested to learn about pangenomes? Explore this guide to learn how they provide a more complete picture of the core genes of a given species and how that can provide better biological understanding.
The study of genomics has revolutionized our understanding of science, but the field of transcriptomics grew with the need to explore the functional impacts of genetic variation. While different tissues in an organism may share the same genomic DNA, they can differ greatly in what regions are transcribed into RNA and in their patterns of RNA processing. By reviewing the history of transcriptomics, we can see the advantages of RNA sequencing using a full-length transcript approach become clearer.
This animation depicts a process by which single molecule SMRTbell templates are loaded in the Zero Mode Waveguides (ZMWs) of the PacBio RS II sequencing system using the automated MagBead Station.
PacBio’s SMRT technology harnesses the natural process of DNA replication, which is a highly efficient and accurate process. Our SMRT technology enables the observation of DNA synthesis as it occurs in real time.
In this BioConference Live webinar, PacBio CSO Jonas Korlach highlights how multi-kilobase reads from SMRT Sequencing can resolve many of the previously considered ‘difficult-to-sequence’ genomic regions. The long reads also allow phasing of the sequence information along the maternal and paternal alleles, demonstrated by full-length, fully phased HLA class I & II gene sequencing. In addition, characterizing the complex landscape of alternative gene products is currently very difficult with short-read sequencing technologies, and he describes how long-read, full-length mRNA sequencing can be used to describe the diversity of transcript isoforms, with no assembly required. Lastly, in the exciting area of…
Mark Gerstein is the co-director of the Yale Computational Biology and Bioinformatics program where he focuses on better annotation of the human genome and better ways to mine big genomics data. He has played a big role in some of the large genomics initiatives since the first human genome project, including ENCODE and the 1,000 Genomes Project. “I’m very enthusiastic, of course, about the thousand dollar genome, but I don’t think that a true human genome has arrived for a thousand dollars,” Mark says at the outset of this Mendelspod interview. “The great excitement of next generation sequencing—which is deserved—has…
PacBio customers and thought leaders discuss the role SMRT sequencing is playing in comprehensive genomics: past, present, and future. Featuring J. Craig Venter, Gene Myers, Deanna Church, Jeong-Sun Seo and W. Richard McCombie.
Tetsuo Ashizawa, Director of the Neuroscience Research Program at Houston Methodist Research Institute, presents a novel amplification-free targeted enrichment method using CRISPR-Cas9 for the disease-causing repeat expansion in SCA10. Using long-read sequencing, he has been able to span multi-kilobase repetitive regions and identify interruption sequence motifs that correlate with alternative clinical phenotypes in individuals from varying ethnic backgrounds. Webinar registration required.
Meredith Ashby, from PacBio, presents how large-insert targeted sequencing (LITS) provides a more comprehensive picture of structural variation relevant to human disease and genomic disorders, providing insights into possible rearrangement mechanisms in Potocki-Lupski syndrome and revealing subtleties in cancer biology. Webinar registration required.
Melissa Laird Smith from Icahn Institute at Mt. Sinai reviews her work studying the genetic background of immune response by characterizing population diversity at the immunoglobulin heavy chain locus. Webinar registration required.
In this AGBT 2017 talk, PacBio CSO Jonas Korlach provided a technology roadmap for the Sequel System, including plans the continue performance and throughput increases through early 2019. Per SMRT Cell throughput of the Sequel System is expected to double this year and again next year. Together with a new higher-capacity SMRT Cell expected to be released by the end of 2018, these improvements result in a ~30-fold increase or ~150 Gb / SMRT Cell allowing a real $1000 real de novo human genome assembly. Also discussed: Additional application protocol improvements, new chemistry and software updates, and a look at…
Explore human genetic variation and learn how SMRT Sequencing uncovers the full spectrum of structural variation to advance understanding of genetic disease and broaden our knowledge of human diversity.
Most of the basepairs that differ between two human genomes are in intermediate-sized structural variants (50 bp to 5 kb), which are too small to detect with array CGH but too large to reliably discover with short-read NGS. PacBio Single Molecule, Real-Time (SMRT) Sequencing fills this technology gap. SMRT Sequencing detects tens of thousands of structural variants in a human genome, approximately five times the sensitivity of short-read NGS. To discover variants using SMRT Sequencing, we have developed pbsv, which is available in version 5 of the PacBio SMRT Link software suite. The pbsv algorithm applies a sequence of stages:…