Menu
September 21, 2019  |  

Multi-Locus Variable number of tandem repeat Analysis (MLVA) of Yersinia ruckeri confirms the existence of host-specificity, geographic endemism and anthropogenic dissemination of virulent clones.

A Multi-Locus Variable number of tandem repeat Analysis (MLVA) assay was developed for epizootiological study of the internationally significant fish pathogen Yersinia ruckeri, which causes yersiniosis in salmonids. The assay involves amplification of ten Variable Number of Tandem Repeat (VNTR) loci in two five-plex PCR reactions, followed by capillary electrophoresis. A collection of 484 Y. ruckeri isolates, originating from various biological sources and collected from four continents over seven decades, was analysed. Minimum spanning tree cluster analysis of MLVA profiles separated the studied population into nine major clonal complexes, and a number of minor clusters and singletons. The major clonal complexes could be associated with host species, geographic origin and serotype. A single large clonal complex of serotype O1 isolates dominating the yersiniosis situation in international rainbow trout farming suggests anthropogenic spread of this clone, possibly related to transport of fish. Moreover, sub-clustering within this clonal complex indicates putative transmission routes and multiple biotype shift events. In contrast to the situation in rainbow trout, Y. ruckeri strains associated with disease in Atlantic salmon appear as more or less geographically isolated clonal complexes. A single complex of serotype O1 exclusive to Norway was found to be responsible for almost all major yersiniosis outbreaks in modern Norwegian salmon farming, and site-specific sub-clustering further indicates persistent colonisation of freshwater farms in Norway. Identification of genetically diverse Y. ruckeri isolates from clinically healthy fish and environmental sources also suggests the widespread existence of less virulent or avirulent strains.Importance This comprehensive population study substantially improves our understanding of the epizootiological history and nature of an internationally important fish pathogenic bacterium. The MLVA assay developed and presented represents a high-resolution typing tool particularly well suited for Yersinia ruckeri infection tracing, selection of strains for vaccine inclusion, and risk assessment. The ability of the assay to separate isolates into geographically linked and/or possibly host-specific clusters reflects its potential utility for maintenance of national biosecurity. The MLVA is internationally applicable, robust, and provides clear, unambiguous and easily interpreted results. Typing is reasonably inexpensive, with a moderate technological requirement, and may be completed from a harvested colony within a single working day. As the resulting MLVA profiles are readily portable, any Y. ruckeri strain may rapidly be placed in a global epizootiological context. Copyright © 2018 Gulla et al.


September 21, 2019  |  

Towards Personalized Medicine: An Improved De Novo Assembly Procedure for Early Detection of Drug Resistant HIV Minor Quasispecies in Patient Samples.

The third-generation sequencing technology, PacBio, has shown an ability to sequence the HIV virus amplicons in their full length. The long read of PaBio offers a distinct advantage to comprehensively understand the virus evolution complexity at quasispecies level (i.e. maintaining linkage information of variants) comparing to the short reads from Illumina shotgun sequencing. However, due to the highnoise nature of the PacBio reads, it is still a challenge to build accurate contigs at high sensitivity. Most of previously developed NGS assembly tools work with the assumption that the input reads are fairly accurate, which is largely true for the data derived from Sanger or Illumina technologies. When applying these tools on PacBio high-noise reads, they are largely driven by noise rather than true signal eventually leading to poor results in most cases. In this study, we propose the de novo assembly procedure, which comprises a positivefocused strategy, and linkage-frequency noise reduction so that it is more suitable for PacBio high-noise reads. We further tested the unique de novo assembly procedure on HIV PacBio benchmark data and clinical samples, which accurately assembled dominant and minor populations of HIV quasispecies as expected. The improved de novo assembly procedure shows potential ability to promote PacBio technology in the field of HIV drug-resistance clinical detection, as well as in broad HIV phylogenetic studies.


September 21, 2019  |  

Divergent selection causes whole genome differentiation without physical linkage among the targets in Spodoptera frugiperda (Noctuidae)

The process of speciation involves whole genome differentiation by overcoming gene flow between diverging populations. We have ample knowledge which evolutionary forces may cause genomic differentiation, and several speciation models have been proposed to explain the transition from genetic to genomic differentiation. However, it is still unclear what are critical conditions enabling genomic differentiation in nature. The Fall armyworm, Spodoptera frugiperda, is observed as two sympatric strains that have different host-plant ranges, suggesting the possibility of ecological divergent selection. In our previous study, we observed that these two strains show genetic differentiation across the whole genome with an unprecedentedly low extent, suggesting the possibility that whole genome sequences started to be differentiated between the strains. In this study, we analyzed whole genome sequences from these two strains from Mississippi to identify critical evolutionary factors for genomic differentiation. The genomic Fst is low (0.017) while 91.3% of 10kb windows have Fst greater than 0, suggesting genome-wide differentiation with a low extent. We identified nearly 400 outliers of genetic differentiation between strains, and found that physical linkage among these outliers is not a primary cause of genomic differentiation. Fst is not significantly correlated with gene density, a proxy for the strength of selection, suggesting that a genomic reduction in migration rate dominates the extent of local genetic differentiation. Our analyses reveal that divergent selection alone is sufficient to generate genomic differentiation, and any following diversifying factors may increase the level of genetic differentiation between diverging strains in the process of speciation.


September 21, 2019  |  

Population sequencing reveals clonal diversity and ancestral inbreeding in the grapevine cultivar Chardonnay.

Chardonnay is the basis of some of the world’s most iconic wines and its success is underpinned by a historic program of clonal selection. There are numerous clones of Chardonnay available that exhibit differences in key viticultural and oenological traits that have arisen from the accumulation of somatic mutations during centuries of asexual propagation. However, the genetic variation that underlies these differences remains largely unknown. To address this knowledge gap, a high-quality, diploid-phased Chardonnay genome assembly was produced from single-molecule real time sequencing, and combined with re-sequencing data from 15 different Chardonnay clones. There were 1620 markers identified that distinguish the 15 clones. These markers were reliably used for clonal identification of independently sourced genomic material, as well as in identifying a potential genetic basis for some clonal phenotypic differences. The predicted parentage of the Chardonnay haplomes was elucidated by mapping sequence data from the predicted parents of Chardonnay (Gouais blanc and Pinot noir) against the Chardonnay reference genome. This enabled the detection of instances of heterosis, with differentially-expanded gene families being inherited from the parents of Chardonnay. Most surprisingly however, the patterns of nucleotide variation present in the Chardonnay genome indicate that Pinot noir and Gouais blanc share an extremely high degree of kinship that has resulted in the Chardonnay genome displaying characteristics that are indicative of inbreeding.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.