A diverse, antibiotic-naive microbiota prevents highly antibiotic-resistant microbes, including carbapenem-resistant Klebsiella pneumoniae (CR-Kp), from achieving dense colonization of the intestinal lumen. Antibiotic-mediated destruction of the microbiota leads to expansion of CR-Kp in the gut, markedly increasing the risk of bacteremia in vulnerable patients. While preventing dense colonization represents a rational approach to reduce intra- and interpatient dissemination of CR-Kp, little is known about pathogen-associated factors that enable dense growth and persistence in the intestinal lumen. To identify genetic factors essential for dense colonization of the gut by CR-Kp, we constructed a highly saturated transposon mutant library with >150,000 unique mutations…
Pueraria thomsonii Benth is an important medicinal plant. Transcriptome sequencing, unigene assembly, the annotation of transcripts and the study of gene expression profiles play vital roles in gene function research. However, the full-length transcriptome of P. thomsonii remains unknown. Here, we obtained 44,339 nonredundant transcripts of P. thomsonii by using the PacBio RS II Isoform and Illumina sequencing platforms, of which 43,195 were annotated genes. Compared with the expression levels in the plant roots, those of transcripts with a |fold change| = 4 and FDR < 0.01 in the leaves or stems were assigned as differentially expressed transcripts (DETs). In…
The Gram-positive a-hemolytic Streptococcus suis is a major pathogen in the swine industry and an emerging zoonotic agent that can cause several systemic issues in both pigs and humans. A total of 35 S. suis serotypes (SS) have been identified and genotyped into > 700 sequence types (ST) by multilocus sequence typing (MLST). Eurasian ST1 isolates are the most virulent of all S. suis SS2 strains while North American ST25 and ST28 strains display moderate to low/no virulence phenotypes, respectively. Notably, S. suis 90-1330 is an avirulent Canadian SS2-ST28 isolate producing a lantibiotic bacteriocin with potential prophylactic applications. To investigate…
The pathogenic fungus Sclerotinia sclerotiorum infects over 600 species of plant. It is present in numerous environments throughout the world and causes significant damage to many agricultural crops. Fragmentation and lack of gene flow between populations may lead to population sub-structure. Within discrete recombining populations, positive selection may lead to a ‘selective sweep’. This is characterised by an increase in frequency of a favourable allele leading to reduction in genotypic diversity in a localised genomic region due to the phenomenon of genetic hitchhiking. We aimed to assess whether isolates of S. sclerotiorum from around the world formed genotypic clusters associated…
In this work we report the complete sequence and assembly of the estradiol-degrading bacterium Novosphingobium tardaugens NBRC 16725 genome into a single contig using the Pacific Biosciences RS II system.
The complete genome sequence of Lactococcus lactis subsp. cremoris 3107, a dairy starter strain and a host for the model lactococcal P335 bacteriophage TP901-1, is reported here. The circular chromosome of L. lactis subsp. cremoris 3107 is among the smallest genomes of currently sequenced lactococcal strains. L. lactis subsp. cremoris 3107 harbors a complement of six plasmids, which appears to be a reflection of its adaptation to the nutrient-rich dairy environment.
Members of the genus Nocardia are widespread in diverse environments; a wide range of Nocardia species are known to cause nocardiosis in several animals, including cat, dog, fish, and humans. Of the pathogenic Nocardia species, N. seriolae is known to cause disease in cultured fish, resulting in major economic loss. We isolated two N. seriolae strains, CK-14008 and EM15050, from diseased fish and sequenced their genomes using the PacBio sequencing platform. To identify their genomic features, we compared their genomes with those of other Nocardia species. Phylogenetic analysis showed that N. seriolae shares a common ancestor with a putative human…
Artificial selection has produced varieties of domesticated maize that thrive in temperate climates around the world. However, the direct progenitor of maize, teosinte, is indigenous only to a relatively small range of tropical and subtropical latitudes and grows poorly or not at all outside of this region. Tripsacum, a sister genus to maize and teosinte, is naturally endemic to the majority of areas in the western hemisphere where maize is cultivated. A full-length reference transcriptome for Tripsacum dactyloides generated using long-read Iso-Seq data was used to characterize independent adaptation to temperate climates in this clade. Genes related to phospholipid biosynthesis,…
Scutellaria baicalensis Georgi is important in Chinese traditional medicine where preparations of dried roots, “Huang Qin,” are used for liver and lung complaints and as complementary cancer treatments. We report a high-quality reference genome sequence for S. baicalensis where 93% of the 408.14-Mb genome has been assembled into nine pseudochromosomes with a super-N50 of 33.2 Mb. Comparison of this sequence with those of closely related species in the order Lamiales, Sesamum indicum and Salvia splendens, revealed that a specialized metabolic pathway for the synthesis of 4′-deoxyflavone bioactives evolved in the genus Scutellaria. We found that the gene encoding a specific…
Quorum sensing is a cell density-dependent regulation of gene expression. N-acyl-l-homoserine lactone (AHL) is a major quorum-sensing signaling molecule in gram-negative bacteria and synthesized by the LuxI family protein. The genus Serratia is known as a producer of the red pigment, prodigiosin, whose biosynthesis is dependent on the pig gene cluster. Some Serratia strains regulate prodigiosin production via AHL-mediated quorum sensing, whereas there is red-pigmented Serratia strains without quorum-sensing system. In addition, nonpigmented Serratia marcescens, which does not produce prodigiosin, has also been isolated from natural and clinical environments. In this study, we aim to reveal the distribution and genetic…
Algal polysaccharides are an important bacterial nutrient source and central component of marine food webs. However, cellular and ecological aspects concerning the bacterial degradation of polysaccharide mixtures, as presumably abundant in natural habitats, are poorly understood. Here, we contextualize marine polysaccharide mixtures and their bacterial utilization in several ways using the model bacterium Alteromonas macleodii 83-1, which can degrade multiple algal polysaccharides and contributes to polysaccharide degradation in the oceans. Transcriptomic, proteomic and exometabolomic profiling revealed cellular adaptations of A. macleodii 83-1 when degrading a mix of laminarin, alginate and pectin. Strain 83-1 exhibited substrate prioritization driven by catabolite repression,…
The cyanobacterium Nostoc flagelliforme is an extremophile that thrives under extraordinary desiccation and ultraviolet (UV) radiation conditions. To investigate its survival strategies, we performed whole-genome sequencing of N. flagelliforme CCNUN1 and transcriptional profiling of its field populations upon rehydration in BG11 medium. The genome of N. flagelliforme is 10.23 Mb in size and contains 10 825 predicted protein-encoding genes, making it one of the largest complete genomes of cyanobacteria reported to date. Comparative genomics analysis among 20 cyanobacterial strains revealed that genes related to DNA replication, recombination and repair had disproportionately high contributions to the genome expansion. The ability of…
Cultivars of purple tea (Camellia sinensis) that accumulate anthocyanins in place of catechins are currently attracting global interest in their use as functional health beverages. RNA-seq of normal (LJ43) and purple Zijuan (ZJ) cultivars identified the transcription factor CsMYB75 and phi (F) class glutathione transferase CsGSTF1 as being associated with anthocyanin hyperaccumulation. Both genes mapped as a quantitative trait locus (QTL) to the purple bud leaf color (BLC) trait in F1 populations, with CsMYB75 promoting the expression of CsGSTF1 in transgenic tobacco (Nicotiana tabacum). Although CsMYB75 elevates the biosynthesis of both catechins and anthocyanins, only anthocyanins accumulate in purple tea,…
The terrestrial isopod Armadillidium vulgare is an original model to study the evolution of sex determination and symbiosis in animals. Its sex can be determined by ZW sex chromosomes, or by feminizing Wolbachia bacterial endosymbionts. Here, we report the sequence and analysis of the ZW female genome of A. vulgare. A distinguishing feature of the 1.72 gigabase assembly is the abundance of repeats (68% of the genome). We show that the Z and W sex chromosomes are essentially undifferentiated at the molecular level and the W-specific region is extremely small (at most several hundreds of kilobases). Our results suggest that…
Crucihimalaya himalaica, a close relative of Arabidopsis and Capsella, grows on the Qinghai-Tibet Plateau (QTP) about 4,000 m above sea level and represents an attractive model system for studying speciation and ecological adaptation in extreme environments. We assembled a draft genome sequence of 234.72 Mb encoding 27,019 genes and investigated its origin and adaptive evolutionary mechanisms. Phylogenomic analyses based on 4,586 single-copy genes revealed that C. himalaica is most closely related to Capsella (estimated divergence 8.8 to 12.2 Mya), whereas both species form a sister clade to Arabidopsis thaliana and Arabidopsis lyrata, from which they diverged between 12.7 and 17.2…