April 21, 2020  |  

Characterization of Reference Materials for Genetic Testing of CYP2D6 Alleles: A GeT-RM Collaborative Project.

Pharmacogenetic testing increasingly is available from clinical and research laboratories. However, only a limited number of quality control and other reference materials currently are available for the complex rearrangements and rare variants that occur in the CYP2D6 gene. To address this need, the Division of Laboratory Systems, CDC-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing and research communities and the Coriell Cell Repositories (Camden, NJ), has characterized 179 DNA samples derived from Coriell cell lines. Testing included the recharacterization of 137 genomic DNAs that were genotyped in previous Genetic Testing Reference Material Coordination Program studies and 42 additional samples that had not been characterized previously. DNA samples were distributed to volunteer testing laboratories for genotyping using a variety of commercially available and laboratory-developed tests. These publicly available samples will support the quality-assurance and quality-control programs of clinical laboratories performing CYP2D6 testing.Published by Elsevier Inc.


April 21, 2020  |  

Characterization of Extracellular Biosurfactants Expressed by a Pseudomonas putida Strain Isolated from the Interior of Healthy Roots from Sida hermaphrodita Grown in a Heavy Metal Contaminated Soil.

Pseudomonas putida E41 isolated from root interior of Sida hermaphrodita (grown on a field contaminated with heavy metals) showed high biosurfactant activity. In this paper, we describe data from mass spectrometry and genome analysis, to improve our understanding on the phenotypic properties of the strain. Supernatant derived from P. putida E41 liquid culture exhibited a strong decrease in the surface tension accompanied by the ability for emulsion stabilization. We identified extracellular lipopeptides, putisolvin I and II expression but did not detect rhamnolipids. Their presence was confirmed by matrix-assisted laser desorption and ionization (MALDI) TOF/TOF technique. Moreover, ten phospholipids (mainly phosphatidylethanolamines PE 33:1 and PE 32:1) which were excreted by vesicles were also detected. In contrast the bacterial cell pellet was dominated by phosphatidylglycerols (PGs), which were almost absent in the supernatant. It seems that the composition of extracellular (secreted to the environment) and cellular lipids in this strain differs. Long-read sequencing and complete genome reconstruction allowed the identification of a complete putisolvin biosynthesis pathway. In the genome of P. putida E41 were also found all genes involved in glycerophospholipid biosynthesis, and they are likely responsible for the production of detected phospholipids. Overall this is the first report describing the expression of extracellular lipopeptides (identified as putisolvins) and phospholipids by a P. putida strain, which might be explained by the need to adapt to the highly contaminated environment.


April 21, 2020  |  

Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions.

Chlorella vulgaris is a fast-growing fresh-water microalga cultivated at the industrial scale for applications ranging from food to biofuel production. To advance our understanding of its biology and to establish genetics tools for biotechnological manipulation, we sequenced the nuclear and organelle genomes of Chlorella vulgaris 211/11P by combining next generation sequencing and optical mapping of isolated DNA molecules. This hybrid approach allowed to assemble the nuclear genome in 14 pseudo-molecules with an N50 of 2.8 Mb and 98.9% of scaffolded genome. The integration of RNA-seq data obtained at two different irradiances of growth (high light-HL versus low light -LL) enabled to identify 10,724 nuclear genes, coding for 11,082 transcripts. Moreover 121 and 48 genes were respectively found in the chloroplast and mitochondrial genome. Functional annotation and expression analysis of nuclear, chloroplast and mitochondrial genome sequences revealed peculiar features of Chlorella vulgaris. Evidence of horizontal gene transfers from chloroplast to mitochondrial genome was observed. Furthermore, comparative transcriptomic analyses of LL vs HL provide insights into the molecular basis for metabolic rearrangement in HL vs. LL conditions leading to enhanced de novo fatty acid biosynthesis and triacylglycerol accumulation. The occurrence of a cytosolic fatty acid biosynthetic pathway can be predicted and its upregulation upon HL exposure is observed, consistent with increased lipid amount under HL. These data provide a rich genetic resource for future genome editing studies, and potential targets for biotechnological manipulation of Chlorella vulgaris or other microalgae species to improve biomass and lipid productivity.This article is protected by copyright. All rights reserved.


April 21, 2020  |  

Complete genome sequence of Marinobacter sp. LQ44, a haloalkaliphilic phenol-degrading bacterium isolated from a deep-sea hydrothermal vent

Marinobacter sp. strain LQ44, an alkaliphile and moderate halophile from a deep-sea hydrothermal vent on the East Pacific Rise, is a novel phenol-degrading bacterium that is capable of utilizing phenol as sole carbon and energy sources. Here, we present the complete genome sequence of strain LQ44, which consists of 4,435,564?bp with a circular chromosome, 4164 protein-coding genes, 3 rRNA operons and 50 tRNAs. Genome analysis revealed that strain LQ44 may degrade phenol via meta-cleavage pathway. The LQ44 genome contains multiple genes involved in pH adaptation and osmotic adjustment. Genes related to hydrocarbon degradation, aerobic denitrification and potential industrial important enzymes were also identified from the genome. To our knowledge, this is the first report of a genome sequence of a haloalkaliphilic phenol-degrading bacterium, which will provide insights into the survival of this bacterium under salt-alkali conditions and the potential for biotechnological applications.


April 21, 2020  |  

Complete genome sequence of Paracoccus sp. Arc7-R13, a silver nanoparticles synthesizing bacterium isolated from Arctic Ocean sediments

Paracoccus sp. Arc7-R13, a silver nanoparticles (AgNPs) synthesizing bacterium, was isolated from Arctic Ocean sediment. Here we describe the complete genome of Paracoccus sp. Arc7-R13. The complete genome contains 4,040,012?bp with 66.66?mol%?G?+?C content, including one circular chromosome of 3,231,929?bp (67.45?mol%?G?+?C content), and eight plasmids with length ranging from 24,536?bp to 199,685?bp. The genome contains 3835 protein-coding genes (CDSs), 49 tRNA genes, as well as 3 rRNA operons as 16S-23S-5S rRNA. Based on the gene annotation and Swiss-Prot analysis, a total of 15 genes belonging to 11 kinds, including silver exporting P-type ATPase (SilP), alkaline phosphatase, nitroreductase, thioredoxin reductase, NADPH dehydrogenase and glutathione peroxidase, might be related to the synthesis of AgNPs. Meanwhile, many additional genes associated with synthesis of AgNPs such as protein-disulfide isomerase, c-type cytochrome, glutathione synthase and dehydrogenase reductase were also identified.


April 21, 2020  |  

The Chinese chestnut genome: a reference for species restoration

Forest tree species are increasingly subject to severe mortalities from exotic pests, diseases, and invasive organisms, accelerated by climate change. Forest health issues are threatening multiple species and ecosystem sustainability globally. While sources of resistance may be available in related species, or among surviving trees, introgression of resistance genes into threatened tree species in reasonable time frames requires genome-wide breeding tools. Asian species of chestnut (Castanea spp.) are being employed as donors of disease resistance genes to restore native chestnut species in North America and Europe. To aid in the restoration of threatened chestnut species, we present the assembly of a reference genome with chromosome-scale sequences for Chinese chestnut (C. mollissima), the disease-resistance donor for American chestnut restoration. We also demonstrate the value of the genome as a platform for research and species restoration, including new insights into the evolution of blight resistance in Asian chestnut species, the locations in the genome of ecologically important signatures of selection differentiating American chestnut from Chinese chestnut, the identification of candidate genes for disease resistance, and preliminary comparisons of genome organization with related species.


April 21, 2020  |  

Comparative Genomic Analysis of a Multidrug-Resistant Listeria monocytogenes ST477 Isolate.

Listeria monocytogenes is an opportunistic human foodborne pathogen that causes severe infections with high hospitalization and fatality rates. Clonal complex 9 (CC9) contains a large number of sequence types (STs) and is one of the predominant clones distributed worldwide. However, genetic characteristics of ST477 isolates, which also belong to CC9, have never been examined, and little is known about the detail genomic traits of this food-associated clone. In this study, we sequenced and constructed the whole-genome sequence of an ST477 isolate from a frozen food sample in China and compared it with 58 previously sequenced genomes of 25 human-associated, 5 animal, and 27 food isolates consisting of 6 CC9 and 52 other clones. Phylogenetic analysis revealed that the ST477 clustered with three Canadian ST9 isolates. All phylogeny revealed that CC9 isolates involved in this study consistently possessed the invasion-related gene vip. Mobile genetic elements (MGEs), resistance genes, and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system were elucidated among CC9 isolates. Our ST477 isolate contained a Tn554-like transposon, carrying five arsenical-resistance genes (arsA-arsD, arsR), which was exclusively identified in the CC9 background. Compared with the ST477 genome, three Canadian ST9 isolates shared nonsynonymous nucleotide substitutions in the condensin complex gene smc and cell surface protein genes ftsA and essC. Our findings preliminarily indicate that the extraordinary success of CC9 clone in colonization of different geographical regions is likely due to conserved features harboring MGEs, functional virulence and resistance genes. ST477 and three ST9 genomes are closely related and the distinct differences between them consist primarily of changes in genes involved in multiplication and invasion, which may contribute to the prevalence of ST9 isolates in food and food processing environment.


April 21, 2020  |  

Complete genome sequence of Pseudoalteromonas sp. MEBiC 03485, isolated from deep-sea sediment

Pseudoalteromonas strains are widely distributed in the marine environment and most have attracted considerable interest owing to their ability to synthesize biologically active metabolites. In this study, we report and describe the genome sequence of Pseudoalteromonas sp. MEBiC 03485, isolated from the deep-sea sediment of Pacific Ocean at a depth of 2000?m. The complete genome consisted of three contigs with a total genome size of 4,167,407?bp and a GC content of 40.76?l%, and was predicted to contain 4194 protein-coding genes and 131 non-coding RNA genes. The strain MEBiC 03485 genome was also shown to contain genes for diverse metabolic pathways. Genome analysis revealed that the genome of strain MEBiC 03485 was enriched with genes involved in signal transduction, mobile elements, and cold-adaptation, some of which might improve ecological fitness in the deep-sea environment. These findings improve our understanding of microbial adaptation strategies in deep-sea environments.


April 21, 2020  |  

Full-length mRNA sequencing and gene expression profiling reveal broad involvement of natural antisense transcript gene pairs in pepper development and response to stresses.

Pepper is an important vegetable with great economic value and unique biological features. In the past few years, significant development has been made towards understanding the huge complex pepper genome; however, pepper functional genomics has not been well studied. To better understand the pepper gene structure and pepper gene regulation, we conducted full-length mRNA sequencing by PacBio sequencing and obtained 57862 high-quality full-length mRNA sequences derived from 18362 previously annotated and 5769 newly detected genes. New gene models were built that combined the full-length mRNA sequences and corrected approximately 500 fragmented gene models from previous annotations. Based on the full-length mRNA, we identified 4114 and 5880 pepper genes forming natural antisense transcript (NAT) genes in-cis and in-trans, respectively. Most of these genes accumulate small RNAs in their overlapping regions. By analyzing these NAT gene expression patterns in our transcriptome data, we identified many NAT pairs responsive to a variety of biological processes in pepper. Pepper formate dehydrogenase 1 (FDH1), which is required for R-gene-mediated disease resistance, may be regulated by nat-siRNAs and participate in a positive feedback loop in salicylic acid biosynthesis during resistance responses. Several cis-NAT pairs and subgroups of trans-NAT genes were responsive to pepper pericarp and placenta development, which may play roles in capsanthin and capsaicin biosynthesis. Using a comparative genomics approach, the evolutionary mechanisms of cis-NATs were investigated, and we found that an increase in intergenic sequences accounted for the loss of most cis-NATs, while transposon insertion contributed to the formation of most new cis-NATs. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.


April 21, 2020  |  

Complete genome sequence of Bacillus velezensis JT3-1, a microbial germicide isolated from yak feces

Bacillus velezensis JT3-1 is a probiotic strain isolated from feces of the domestic yak (Bos grunniens) in the Gansu province of China. It has strong antagonistic activity against Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella Typhimurium, Mannheimia haemolytica, Staphylococcus hominis, Clostridium perfringens, and Mycoplasma bovis. These properties have made the JT3-1 strain the focus of commercial interest. In this study, we describe the complete genome sequence of JT3-1, with a genome size of 3,929,799 bp, 3761 encoded genes and an average GC content of 46.50%. Whole genome sequencing of Bacillus velezensis JT3-1 will lay a good foundation for elucidation of the mechanisms of its antimicrobial activity, and for its future application.


April 21, 2020  |  

Complete genome screening of clinical MRSA isolates identifies lineage diversity and provides full resolution of transmission and outbreak events

Whole-genome sequencing (WGS) of Staphylococcus aureus is increasingly used as part of infection prevention practices, but most applications are focused on conserved core genomic regions due to limitations of short-read technologies. In this study we established a long-read technology-based WGS screening program of all first-episode MRSA blood infections at a major urban hospital. A survey of 132 MRSA genomes assembled from long reads revealed widespread gain/loss of accessory mobile genetic elements among established hospital- and community-associated lineages impacting >10% of each genome, and frequent megabase-scale inversions between endogenous prophages. We also characterized an outbreak of a CC5/ST105/USA100 clone among 3 adults and 18 infants in a neonatal intensive care unit (NICU) lasting 7 months. The pattern of changes among complete outbreak genomes provided full spatiotemporal resolution of its origins and progression, which was characterized by multiple sub-transmissions and likely precipitated by equipment sharing. Compared to other hospital strains, the outbreak strain carried distinct mutations and accessory genetic elements that impacted genes with roles in metabolism, resistance and persistence. This included a DNA-recognition domain recombination in the hsdS gene of a Type-I restriction-modification system that altered DNA methylation. RNA-Seq profiling showed that the (epi)genetic changes in the outbreak clone attenuated agr gene expression and upregulated genes involved in stress response and biofilm formation. Overall our findings demonstrate that long-read sequencing substantially improves our ability to characterize accessory genomic elements that impact MRSA virulence and persistence, and provides valuable information for infection control efforts.


April 21, 2020  |  

Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits.

The ruminants are one of the most successful mammalian lineages, exhibiting morphological and habitat diversity and containing several key livestock species. To better understand their evolution, we generated and analyzed de novo assembled genomes of 44 ruminant species, representing all six Ruminantia families. We used these genomes to create a time-calibrated phylogeny to resolve topological controversies, overcoming the challenges of incomplete lineage sorting. Population dynamic analyses show that population declines commenced between 100,000 and 50,000 years ago, which is concomitant with expansion in human populations. We also reveal genes and regulatory elements that possibly contribute to the evolution of the digestive system, cranial appendages, immune system, metabolism, body size, cursorial locomotion, and dentition of the ruminants. Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020  |  

Rapid transcriptional responses to serum exposure are associated with sensitivity and resistance to antibody-mediated complement killing in invasive Salmonella Typhimurium ST313

Background: Salmonella Typhimurium ST313 exhibits signatures of adaptation to invasive human infection, including higher resistance to humoral immune responses than gastrointestinal isolates. Full resistance to antibody-mediated complement killing (serum resistance) among nontyphoidal Salmonellae is uncommon, but selection of highly resistant strains could compromise vaccine-induced antibody immunity. Here, we address the hypothesis that serum resistance is due to a distinct genotype or transcriptome response in S. Typhimurium ST313.


April 21, 2020  |  

Complete Genome Sequence of Desulfovibrio desulfuricans IC1, a Sulfonate-Respiring Anaerobe.

We report the complete genome sequence of the anaerobic, sulfonate-respiring, sulfate-reducing bacterium Desulfovibrio desulfuricans IC1. The genome was assembled into a single 3.25-Mb circular chromosome with 2,680 protein-coding genes identified. Sequencing of sulfonate-metabolizing anaerobes is key for understanding sulfonate degradation and its role in the sulfur cycle.Copyright © 2019 Day et al.


April 21, 2020  |  

Complete Genome Sequence of Leuconostoc kimchii Strain NKJ218, Isolated from Homemade Kimchi.

Leuconostoc kimchii strain NKJ218 was isolated from homemade kimchi in South Korea. The whole genome was sequenced using the PacBio RS II and Illumina NovoSeq 6000 platforms. Here, we report a genome sequence of strain NKJ218, which consists of a 1.9-Mbp chromosome and three plasmid contigs. A total of 2,005 coding sequences (CDS) were predicted, including 1,881 protein-coding sequences.Copyright © 2019 Jung et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.