Menu
April 21, 2020  |  

Rapid and Focused Maturation of a VRC01-Class HIV Broadly Neutralizing Antibody Lineage Involves Both Binding and Accommodation of the N276-Glycan.

The VH1-2 restricted VRC01-class of antibodies targeting the HIV envelope CD4 binding site are a major focus of HIV vaccine strategies. However, a detailed analysis of VRC01-class antibody development has been limited by the rare nature of these responses during natural infection and the lack of longitudinal sampling of such responses. To inform vaccine strategies, we mapped the development of a VRC01-class antibody lineage (PCIN63) in the subtype C infected IAVI Protocol C neutralizer PC063. PCIN63 monoclonal antibodies had the hallmark VRC01-class features and demonstrated neutralization breadth similar to the prototype VRC01 antibody, but were 2- to 3-fold less mutated. Maturation occurred rapidly within ~24 months of emergence of the lineage and somatic hypermutations accumulated at key contact residues. This longitudinal study of broadly neutralizing VRC01-class antibody lineage reveals early binding to the N276-glycan during affinity maturation, which may have implications for vaccine design.Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

Genome-wide systematic identification of methyltransferase recognition and modification patterns.

Genome-wide analysis of DNA methylation patterns using single molecule real-time DNA sequencing has boosted the number of publicly available methylomes. However, there is a lack of tools coupling methylation patterns and the corresponding methyltransferase genes. Here we demonstrate a high-throughput method for coupling methyltransferases with their respective motifs, using automated cloning and analysing the methyltransferases in vectors carrying a strain-specific cassette containing all potential target sites. To validate the method, we analyse the genomes of the thermophile Moorella thermoacetica and the mesophile Acetobacterium woodii, two acetogenic bacteria having substantially modified genomes with 12 methylation motifs and a total of 23 methyltransferase genes. Using our method, we characterize the 23 methyltransferases, assign motifs to the respective enzymes and verify activity for 11 of the 12 motifs.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.