The bacteria living on and within us can impact health, disease, and even our behavior, but there is still much to learn about the breadth of their effects. The torrent of new discoveries unleashed by high-throughput sequencing has captured the imagination of scientists and the public alike. Scientists at Second Genome are hoping to apply these insights to improve human health, leveraging their bioinformatics expertise to mine bacterial communities for potential therapeutics. Recently they teamed up with scientists at PacBio to explore how long-read sequencing might supplement their short-read-based pipeline for gene discovery, using an environmental sample as a test…
Grant Cramer from the University of Nevada, Reno, and Dario Cantu from the Univeristy of Callifornia, Davis, discuss past challenges with sequencing Clone 8 of Cabernet Sauvignon (Vitis vinifera). An assembly of the genome was attempted with approximately 110x Illumina reads and 5x PacBio reads. The PacBio SMRT Sequencing read made major improvements in the assembly compared with the results of Illumina reads only. However, the assembly results were still unsatisfactory, so an additional 100-fold SMRT Sequencing coverage had been generated. An update on the current sequencing results and status of the assembly are presented.
In this Webinar, we will give an introduction to Pacific Biosciences’ single molecule, real-time (SMRT) sequencing. After showing how the system works, we will discuss the main features of the technology with an emphasis on the difference between systematic error and random error and how SMRT sequencing produces better consensus accuracy than other systems. Following this, we will discuss several ground-breaking discoveries in medical science that were made possible by the longs reads and high accuracy of SMRT Sequencing.
In this webinar, Emily Hatas of PacBio shares information about the applications and benefits of SMRT Sequencing in plant and animal biology, agriculture, and industrial research fields. This session contains an overview of several applications: whole-genome sequencing for de novo assembly; transcript isoform sequencing (Iso-Seq) method for genome annotation; targeted sequencing solutions; and metagenomics and microbial interactions. High-level workflows and best practices are discussed for key applications.
In this PacBio User Group Meeting presentation, Nic Wheeler of University of Wisconsin-Madison, speaks about RNA sequencing for filarial nematodes associated with understudied tropical diseases. His team used Iso-Seq analysis to improve gene models and achieve better transcriptome coverage for these worms, which typically have poorly annotated and fragmented genome assemblies. While getting enough RNA to study is a technical challenge, the group still managed to generate full-length isoforms, many of which were novel or contained novel junctions.
In this PacBio User Group Meeting presentation, PacBio scientist Kristin Mars speaks about recent updates, such as the single-day library prep that’s now possible with the Iso-Seq Express workflow. She also notes that one SMRT Cell 8M is sufficient for most Iso-Seq experiments for whole transcriptome sequencing at an affordable price.
In this webinar, Dr. Ashby gives attendees a brief update on PacBio’s metagenomics solutions on the Sequel II System. Then, Dr. Ma, University of Maryland School of Medicine, discusses her work using long read sequencing to identify high-resolution microbial biomarkers associated with leaky gut syndrome in premature infants. Finally, Dr. Weinstock, The Jackson Laboratory, talks about the potential of highly accurate long reads to enable strain-level resolution of the human gut microbiome by resolving intraspecies variation in multiple copies of the 16S gene.
Arabica coffee, revered for its taste and aroma, has a complex genome. It is an allotetraploid (2n=4x=44) with a genome size of approximately 1.3 Gb, derived from the recent (< 0.6 Mya) hybridization of two diploid progenitors (2n=2x=22), C. canephora (710 Mb) and C. eugenioides (670 Mb). Both parental species diverged recently (< 4.2Mya) and their genomes are highly homologous. To facilitate assembly, a dihaploid plant was chosen for sequencing. Initial genome assembly attempts with short read data produced an assembly covering 1,031 Mb of the C. arabica genome with a contig L50 of 9kb. By implementation of long read…
The data throughput of next-generation sequencing allows whole microbial communities to be analyzed using a shotgun sequencing approach. Because a key task in taking advantage of these data is the ability to cluster reads that belong to the same member in a community, single-molecule long reads of up to 30 kb from SMRT Sequencing provide a unique capability in identifying those relationships and pave the way towards finished assemblies of community members. Long reads become even more valuable as samples get more complex with lower intra-species variation, a larger number of closely related species, or high intra-species variation. Here we…
The throughput of SMRT Sequencing and long reads allows microbial communities to be analyzed using a shotgun sequencing approach. Key to leveraging this data is the ability to cluster sequences belonging to the same member of a community. Long reads of up to 40 kb provide a unique capability in identifying those relationships, and pave the way towards finished assemblies of community members. Long reads are highly valuable when samples are more complex and containing lower intra-species variation, such as a larger number of closely related species, or high intra-species variation. Here, we present a collection of tools tailored for…
There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments generally use short-read, second-generation sequencing, which results in data processing difficulties. For example, reads less than 1 kb in length will likely not cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members…
There are many sequencing-based approaches to understanding complex metagenomic communities, spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments require a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, Single Molecule, Real-Time (SMRT) Sequencing reads in the 1-2 kb range, with >99% consensus accuracy, can be efficiently generated for low amounts of input DNA, e.g. as little as 10 ng of input DNA sequenced in 4 SMRT Cells can generate…
Outside of the simplest cases (haploid, bacteria, or inbreds), genomic information is not carried in a single reference per individual, but rather has higher ploidy (n=>2) for almost all organisms. The existence of two or more highly related sequences within an individual makes it extremely difficult to build high quality, highly contiguous genome assemblies from short DNA fragments. Based on the earlier work on a polyploidy aware assembler, FALCON ( https://github.com/PacificBiosciences/FALCON) , we developed new algorithms and software (“FALCON-unzip”) for de novo haplotype reconstructions from SMRT Sequencing data. We generate two datasets for developing the algorithms and the prototype software:…
There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR. Whole-sample shotgun experiments generally use short-read sequencing, which results in data processing difficulties. For example, reads less than 500bp in length will rarely cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members may not be represented…
There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR. Whole-sample shotgun experiments generally use short-read sequencing, which results in data processing difficulties. For example, reads less than 500 bp in length will rarely cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members may not be…