X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, February 26, 2021

An interactive workflow for the analysis of contigs from the metagenomic shotgun assembly of SMRT Sequencing data.

The data throughput of next-generation sequencing allows whole microbial communities to be analyzed using a shotgun sequencing approach. Because a key task in taking advantage of these data is the ability to cluster reads that belong to the same member in a community, single-molecule long reads of up to 30 kb from SMRT Sequencing provide a unique capability in identifying those relationships and pave the way towards finished assemblies of community members. Long reads become even more valuable as samples get more complex with lower intra-species variation, a larger number of closely related species, or high intra-species variation. Here we…

Read More »

Friday, February 26, 2021

Genome assembly strategies of the recent polyploid, Coffea arabica.

Arabica coffee, revered for its taste and aroma, has a complex genome. It is an allotetraploid (2n=4x=44) with a genome size of approximately 1.3 Gb, derived from the recent (< 0.6 Mya) hybridization of two diploid progenitors (2n=2x=22), C. canephora (710 Mb) and C. eugenioides (670 Mb). Both parental species diverged recently (< 4.2Mya) and their genomes are highly homologous. To facilitate assembly, a dihaploid plant was chosen for sequencing. Initial genome assembly attempts with short read data produced an assembly covering 1,031 Mb of the C. arabica genome with a contig L50 of 9kb. By implementation of long read…

Read More »

Friday, February 26, 2021

A workflow for the analysis of contigs from the metagenomic shotgun assembly of SMRT Sequencing data

The throughput of SMRT Sequencing and long reads allows microbial communities to be analyzed using a shotgun sequencing approach. Key to leveraging this data is the ability to cluster sequences belonging to the same member of a community. Long reads of up to 40 kb provide a unique capability in identifying those relationships, and pave the way towards finished assemblies of community members. Long reads are highly valuable when samples are more complex and containing lower intra-species variation, such as a larger number of closely related species, or high intra-species variation. Here, we present a collection of tools tailored for…

Read More »

Friday, February 26, 2021

Profiling metagenomic communities using circular consensus and Single Molecule, Real-Time Sequencing.

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments generally use short-read, second-generation sequencing, which results in data processing difficulties. For example, reads less than 1 kb in length will likely not cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members…

Read More »

Friday, February 26, 2021

Profiling metagenomic communities using circular consensus and Single Molecule, Real-Time Sequencing

There are many sequencing-based approaches to understanding complex metagenomic communities, spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments require a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, Single Molecule, Real-Time (SMRT) Sequencing reads in the 1-2 kb range, with >99% consensus accuracy, can be efficiently generated for low amounts of input DNA, e.g. as little as 10 ng of input DNA sequenced in 4 SMRT Cells can generate…

Read More »

Friday, February 26, 2021

Diploid genome assembly and comprehensive haplotype sequence reconstruction

Outside of the simplest cases (haploid, bacteria, or inbreds), genomic information is not carried in a single reference per individual, but rather has higher ploidy (n=>2) for almost all organisms. The existence of two or more highly related sequences within an individual makes it extremely difficult to build high quality, highly contiguous genome assemblies from short DNA fragments. Based on the earlier work on a polyploidy aware assembler, FALCON ( https://github.com/PacificBiosciences/FALCON) , we developed new algorithms and software (“FALCON-unzip”) for de novo haplotype reconstructions from SMRT Sequencing data. We generate two datasets for developing the algorithms and the prototype software:…

Read More »

Friday, February 26, 2021

Profiling the microbiome in fecal microbiota transplantation using circular consensus and Single Molecule, Real-Time Sequencing

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR. Whole-sample shotgun experiments generally use short-read sequencing, which results in data processing difficulties. For example, reads less than 500bp in length will rarely cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members may not be represented…

Read More »

Friday, February 26, 2021

Workflow for processing high-throughput, Single Molecule, Real-Time Sequencing data for analyzing the microbiome of patients undergoing fecal microbiota transplantation

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR. Whole-sample shotgun experiments generally use short-read sequencing, which results in data processing difficulties. For example, reads less than 500 bp in length will rarely cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members may not be…

Read More »

Friday, February 26, 2021

Profiling complex population genomes with highly accurate single molecule reads: cow rumen microbiomes

Determining compositions and functional capabilities of complex populations is often challenging, especially for sequencing technologies with short reads that do not uniquely identify organisms or genes. Long-read sequencing improves the resolution of these mixed communities, but adoption for this application has been limited due to concerns about throughput, cost and accuracy. The recently introduced PacBio Sequel System generates hundreds of thousands of long and highly accurate single-molecule reads per SMRT Cell. We investigated how the Sequel System might increase understanding of metagenomic communities. In the past, focus was largely on taxonomic classification with 16S rRNA sequencing. Recent expansion to WGS…

Read More »

Friday, February 26, 2021

Using the PacBio Sequel System to taxonomically and functionally classify metagenomic samples in a trial of patients undergoing fecal microbiota transplantation

Whole-sample shotgun sequencing can provide a more detailed view of a metagenomic community than 16S sequencing, but its use in multi-sample experiments is limited by throughput, cost and analysis complexity. While short-read sequencing technologies offer higher throughput, read lengthss less fewer than 500 bp will rarely cover a gene of interest, and necessitate assembly before further analysis. Assembling large fragments requires sampling each community member at a high depth, significantly increasing the amount of sequencing needed, and limiting the analysis of rare community members. Assembly methods also risk It is also possible to incorrectly combine combining sequences from different community…

Read More »

Friday, February 26, 2021

Profiling complex communities with highly accurate single molecule reads: cow rumen microbiomes

Determining compositions and functional capabilities of complex populations is often challenging, especially for sequencing technologies with short reads that do not uniquely identify organisms or genes. Long-read sequencing improves the resolution of these mixed communities, but adoption for this application has been limited due to concerns about throughput, cost and accuracy. The recently introduced PacBio Sequel System generates hundreds of thousands of long and highly accurate single-molecule reads per SMRT Cell. We investigated how the Sequel System might increase understanding of metagenomic communities. In the past, focus was largely on taxonomic classification with 16S rRNA sequencing. Recent expansion to WGS…

Read More »

Friday, February 26, 2021

De novo PacBio long-read assembled avian genomes correct and add to genes important in neuroscience and conservation research

To test the impact of high-quality genome assemblies on biological research, we applied PacBio long-read sequencing in conjunction with the new, diploid-aware FALCON-Unzip assembler to a number of bird species. These included: the zebra finch, for which a consortium-generated, Sanger-based reference exists, to determine how the FALCON-Unzip assembly would compare to the current best references available; Anna’s hummingbird genome, which had been assembled with short-read sequencing methods as part of the Avian Phylogenomics phase I initiative; and two critically endangered bird species (kakapo and ‘alala) of high importance for conservations efforts, whose genomes had not previously been sequenced and assembled.

Read More »

Saturday, February 20, 2021

Case Study: Mining complex metagenomes for protein discovery with long-read sequencing

The bacteria living on and within us can impact health, disease, and even our behavior, but there is still much to learn about the breadth of their effects. The torrent of new discoveries unleashed by high-throughput sequencing has captured the imagination of scientists and the public alike. Scientists at Second Genome are hoping to apply these insights to improve human health, leveraging their bioinformatics expertise to mine bacterial communities for potential therapeutics. Recently they teamed up with scientists at PacBio to explore how long-read sequencing might supplement their short-read-based pipeline for gene discovery, using an environmental sample as a test…

Read More »

Friday, February 5, 2021

PAG Conference: Update on sequencing of the Cabernet sauvignon genome

Grant Cramer from the University of Nevada, Reno, and Dario Cantu from the Univeristy of Callifornia, Davis, discuss past challenges with sequencing Clone 8 of Cabernet Sauvignon (Vitis vinifera). An assembly of the genome was attempted with approximately 110x Illumina reads and 5x PacBio reads. The PacBio SMRT Sequencing read made major improvements in the assembly compared with the results of Illumina reads only. However, the assembly results were still unsatisfactory, so an additional 100-fold SMRT Sequencing coverage had been generated. An update on the current sequencing results and status of the assembly are presented.

Read More »

Friday, February 5, 2021

Webinar: An introduction to PacBio’s long-read sequencing & how it has been used to make important scientific discoveries

In this Webinar, we will give an introduction to Pacific Biosciences’ single molecule, real-time (SMRT) sequencing. After showing how the system works, we will discuss the main features of the technology with an emphasis on the difference between systematic error and random error and how SMRT sequencing produces better consensus accuracy than other systems. Following this, we will discuss several ground-breaking discoveries in medical science that were made possible by the longs reads and high accuracy of SMRT Sequencing.

Read More »

1 2 3 58

Subscribe for blog updates:

Archives