Menu
June 1, 2021  |  

SMRT Sequencing solutions for investigative studies to understand evolutionary processes.

Single Molecule, Real-Time (SMRT) Sequencing holds promise for addressing new frontiers to understand molecular mechanisms in evolution and gain insight into adaptive strategies. With read lengths exceeding 10 kb, we are able to sequence high-quality, closed microbial genomes with associated plasmids, and investigate large genome complexities, such as long, highly repetitive, low-complexity regions and multiple tandem-duplication events. Improved genome quality, observed at 99.9999% (QV60) consensus accuracy, and significant reduction of gap regions in reference genomes (up to and beyond 50%) allow researchers to better understand coding sequences with high confidence, investigate potential regulatory mechanisms in noncoding regions, and make inferences about evolutionary strategies that are otherwise missed by the coverage biases associated with short- read sequencing technologies. Additional benefits afforded by SMRT Sequencing include the simultaneous capability to detect epigenomic modifications and obtain full-length cDNA transcripts that obsolete the need for assembly. With direct sequencing of DNA in real-time, this has resulted in the identification of numerous base modifications and motifs, which genome-wide profiles have linked to specific methyltransferase activities. Our new offering, the Iso-Seq Application, allows for the accurate differentiation between transcript isoforms that are difficult to resolve with short-read technologies. PacBio reads easily span transcripts such that both 5’/3’ primers for cDNA library generation and the poly-A tail are observed. As such, exon configuration and intron retention events can be analyzed without ambiguity. This technological advance is useful for characterizing transcript diversity and improving gene structure annotations in reference genomes. We review solutions available with SMRT Sequencing, from targeted sequencing efforts to obtaining reference genomes (>100 Mb). This includes strategies for identifying microsatellites and conducting phylogenetic comparisons with targeted gene families. We highlight how to best leverage our long reads that have exceeded 20 kb in length for research investigations, as well as currently available bioinformatics strategies for analysis. Benefits for these applications are further realized with consistent use of size selection of input sample using the BluePippin™ device from Sage Science as demonstrated in our genome improvement projects. Using the latest P5-C3 chemistry on model organisms, these efforts have yielded an observed contig N50 of ~6 Mb, with the longest contig exceeding 12.5 Mb and an average base quality of QV50.


June 1, 2021  |  

SMRT Sequencing solutions for plant genomes and transcriptomes

Single Molecule, Real-Time (SMRT) Sequencing provides efficient, streamlined solutions to address new frontiers in plant genomes and transcriptomes. Inherent challenges presented by highly repetitive, low-complexity regions and duplication events are directly addressed with multi- kilobase read lengths exceeding 8.5 kb on average, with many exceeding 20 kb. Differentiating between transcript isoforms that are difficult to resolve with short-read technologies is also now possible. We present solutions available for both reference genome and transcriptome research that best leverage long reads in several plant projects including algae, Arabidopsis, rice, and spinach using only the PacBio platform. Benefits for these applications are further realized with consistent use of size-selection of input sample using the BluePippin™ device from Sage Science. We will share highlights from our genome projects using the latest P5- C3 chemistry to generate high-quality reference genomes with the highest contiguity, contig N50 exceeding 1 Mb, and average base quality of QV50. Additionally, the value of long, intact reads to provide a no-assembly approach to investigate transcript isoforms using our Iso-Seq protocol will be presented for full transcriptome characterization and targeted surveys of genes with complex structures. PacBio provides the most comprehensive assembly with annotation when combining offerings for both genome and transcriptome research efforts. For more focused investigation, PacBio also offers researchers opportunities to easily investigate and survey genes with complex structures.


June 1, 2021  |  

Draft genome of horseweed illuminates expansion of gene families that might endow herbicide resistance.

Conyza canadensis (horseweed), a member of the Compositae (Asteraceae) family, was the first broadleaf weed to evolve resistance to glyphosate. Horseweed, one of the most problematic weeds in the world, is a true diploid (2n=2X=18) with the smallest genome of any known agricultural weed (335 Mb). Thus, it is an appropriate candidate to help us understand the genetic and genomic basis of weediness. We undertook a draft de novo genome assembly of horseweed by combining data from multiple sequencing platforms (454 GS-FLX, Illumina HiSeq 2000 and PacBio RS) using various libraries with different insertion sizes (~350 bp, ~600 bp, ~3 kb and ~10 kb) of a Tennessee-accessed, glyphosate-resistant horseweed biotype. From 116.3 Gb (~350× coverage) of data, the genome was assembled into 13,966 scaffolds with N50 =33,561 bp. The assembly covered 92.3% of the genome, including the complete chloroplast genome (~153 kb) and a nearly-complete mitochondrial genome (~450 kb in 120 scaffolds). The nuclear genome is comprised of 44,592 protein-coding genes. Genome re-sequencing of seven additional horseweed biotypes was performed. These sequence data were assembled and used to analyze genome variation. Simple sequence repeat and single nucleotide polymorphisms were surveyed. Genomic patterns were detected that associated with glyphosate-resistant or –susceptible biotypes. The draft genome will be useful to better understand weediness, the evolution of herbicide resistance, and to devise new management strategies. The genome will also be useful as another reference genome in the Compositae. To our knowledge, this paper represents the first published draft genome of an agricultural weed.


June 1, 2021  |  

The resurgence of reference quality genome sequence.

Since the advent of Next-Generation Sequencing (NGS), the cost of de novo genome sequencing and assembly have dropped precipitately, which has spurred interest in genome sequencing overall. Unfortunately the contiguity of the NGS assembled sequences, as well as the accuracy of these assemblies have suffered. Additionally, most NGS de novo assemblies leave large portions of genomes unresolved, and repetitive regions are often collapsed. When compared to the reference quality genome sequences produced before the NGS era, the new sequences are highly fragmented and often prove to be difficult to properly annotate. In some cases the contiguous portions are smaller than the average gene size making the sequence not nearly as useful for biologists as the earlier reference quality genomes including of Human, Mouse, C. elegans, or Drosophila. Recently, new 3rd generation sequencing technologies, long-range molecular techniques, and new informatics tools have facilitated a return to high quality assembly. We will discuss the capabilities of the technologies and assess their impact on assembly projects across the tree of life from small microbial and fungal genomes through large plant and animal genomes. Beyond improvements to contiguity, we will focus on the additional biological insights that can be made with better assemblies, including more complete analysis genes in their flanking regulatory context, in-depth studies of transposable elements and other complex gene families, and long-range synteny analysis of entire chromosomes. We will also discuss the need for new algorithms for representing and analyzing collections of many complete genomes at once.


June 1, 2021  |  

Genome and transcriptome of the refeneration-competent flatworm, Macrostomum lignano

The free-living flatworm, Macrostomum lignano, much like its better known planarian relative, Schmidtea mediterranea, has an impressive regenerative capacity. Following injury, this species has the ability to regenerate almost an entirely new organism. This is attributable to the presence of an abundant somatic stem cell population, the neoblasts. These cells are also essential for the ongoing maintenance of most tissues, as their loss leads to irreversible degeneration of the animal. This set of unique properties makes a subset of flatworms attractive organisms for studying the evolution of pathways involved in tissue self-renewal, cell fate specification, and regeneration. The use of these organisms as models, however, is hampered by the lack of a well-assembled and annotated genome sequences, fundamental to modern genetic and molecular studies. Here we report the genomic sequence of Macrostomum lignano and an accompanying characterization of its transcriptome. The genome structure of M. lignano is remarkably complex, with ~75% of its sequence being comprised of simple repeats and transposon sequences. This has made high quality assembly from Illumina reads alone impossible (N50=222 bp). We therefore generated 130X coverage by long sequencing reads from the PacBio platform to create a substantially improved assembly with an N50 of 64 Kbp. We complemented the reference genome with an assembled and annotated transcriptome, and used both of these datasets in combination to probe gene expression patterns during regeneration, examining pathways important to stem cell function. As a whole, our data will provide a crucial resource for the community for the study not only of invertebrate evolution and phylogeny but also of regeneration and somatic pluripotency.


June 1, 2021  |  

Cogent: Reconstructing the coding genome from full-length transcriptome sequences

For highly complex and large genomes, a well-annotated genome may be computationally challenging and costly, yet the study of alternative splicing events and gene annotations usually rely on the existence of a genome. Long-read sequencing technology provides new opportunities to sequence full-length cDNAs, avoiding computational challenges that short read transcript assembly brings. The use of single molecule, real-time sequencing from Pacific Biosciences to sequence transcriptomes (the Iso-SeqTM method), which produces de novo, high-quality, full-length transcripts, has revealed an astonishing amount of alternative splicing in eukaryotic species. With the Iso-Seq method, it is now possible to reconstruct the transcribed regions of the genome using just the transcripts themselves. We present Cogent, a tool for finding gene families and reconstructing the coding genome in the absence of a reference genome. Cogent uses k-mer similarities to first partition the transcripts into different gene families. Then, for each gene family, the transcripts are used to build a splice graph. Cogent identifies bubbles resulting from sequencing errors, minor variants, and exon skipping events, and attempts to resolve each splice graph down to the minimal set of reconstructed contigs. We apply Cogent to a Cuttlefish Iso-Seq dataset, for which there is a highly fragmented, Illumina-based draft genome assembly and little annotation. We show that Cogent successfully discovers gene families and can reconstruct the coding region of gene loci. The reconstructed contigs can then be used to visualize alternative splicing events, identify minor variants, and even be used to improve genome assemblies.


June 1, 2021  |  

Long read sequencing technology to solve complex genomic regions assembly in plants

Numerous whole genome sequencing projects already achieved or ongoing have highlighted the fact that obtaining a high quality genome sequence is necessary to address comparative genomics questions such as structural variations among genotypes and gain or loss of specific function. Despite the spectacular progress that has been done regarding sequencing technologies, accurate and reliable data are still challenging, at the whole genome scale but also when targeting specific genomic regions. These issues are even more noticeable for complex plant genomes. Most plant genomes are known to be particularly challenging due to their size, high density of repetitive elements and various levels of ploidy. To overcome these issues, we have developed a strategy in order to reduce the genome complexity by using the large insert BAC libraries combined with next generation sequencing technologies. We have compared two different technologies (Roche-454 and Pacific Biosciences PacBio RS II) to sequence pools of BAC clones in order to obtain the best quality sequence. We targeted nine BAC clones from different species (maize, wheat, strawberry, barley, sugarcane and sunflower) known to be complex in terms of sequence assembly. We sequenced the pools of the nine BAC clones with both technologies. We have compared results of assembly and highlighted differences due to the sequencing technologies used. We demonstrated that the long reads obtained with the PacBio RS II technology enables to obtain a better and more reliable assembly notably by preventing errors due to duplicated or repetitive sequences in the same region.


June 1, 2021  |  

Reconstruction of the spinach coding genome using full-length transcriptome without a reference genome

For highly complex and large genomes, a well-annotated genome may be computationally challenging and costly, yet the study of alternative splicing events and gene annotations usually rely on the existence of a genome. Long-read sequencing technology provides new opportunities to sequence full-length cDNAs, avoiding computational challenges that short read transcript assembly brings. The use of single molecule, real-time sequencing from PacBio to sequence transcriptomes (the Iso-Seq method), which produces de novo, high-quality, full-length transcripts, has revealed an astonishing amount of alternative splicing in eukaryotic species. With the Iso-Seq method, it is now possible to reconstruct the transcribed regions of the genome using just the transcripts themselves. We present Cogent, a tool for finding gene families and reconstructing the coding genome in the absence of a high-quality reference genome. Cogent uses k-mer similarities to first partition the transcripts into different gene families. Then, for each gene family, the transcripts are used to build a splice graph. Cogent identifies bubbles resulting from sequencing errors, minor variants, and exon skipping events, and attempts to resolve each splice graph down to the minimal set of reconstructed contigs. We apply Cogent to the Iso-Seq data for spinach, Spinacia oleracea, for which there is also a PacBio-based draft genome to validate the reconstruction. The Iso-Seq dataset consists of 68,263 fulllength, Quiver-polished transcript sequences ranging from 528 bp to 6 kbp long (mean: 2.1 kbp). Using the genome mapping as ground truth, we found that 95% (8045/8446) of the Cogent gene families found corresponded to a single genomic loci. For families that contained multiple loci, they were often homologous genes that would be categorized as belonging to the same gene family. Coding genome reconstruction was then performed individually for each gene family. A total of 86% (7283/8446) of the gene families were resolved to a single contig by Cogent, and was validated to be also a single contig in the genome. In 59 cases, Cogent reconstructed a single contig, however the contig corresponded to 2 or more loci in the genome, suggesting possible scaffolding opportunities. In 24 cases, the transcripts had no hits to the genome, though Pfam and BLAST searches of the transcripts show that they were indeed coding, suggesting that the genome is missing certain coding portions. Given the high quality of the spinach genome, we were not surprised to find that Cogent only minorly improved the genome space. However the ability of Cogent to accurately identify gene families and reconstruct the coding genome in a de novo fashion shows that it will be extremely powerful when applied to datasets for which there is no or low-quality reference genome.


June 1, 2021  |  

Full-length transcript profiling with the Iso-Seq method for improved genome annotations

Incomplete annotation of genomes represents a major impediment to understanding biological processes, functional differences between species, and evolutionary mechanisms. Often, genes that are large, embedded within duplicated genomic regions, or associated with repeats are difficult to study by short-read expression profiling and assembly. In addition, most genes in eukaryotic organisms produce alternatively spliced isoforms, broadening the diversity of proteins encoded by the genome, which are difficult to resolve with short-read methods. Short-read RNA sequencing (RNA-seq) works by physically shearing transcript isoforms into smaller pieces and bioinformatically reassembling them, leaving opportunity for misassembly or incomplete capture of the full diversity of isoforms from genes of interest. In contrast, Single Molecule, Real-Time (SMRT) Sequencing directly sequences full-length transcripts without the need for assembly and imputation. Here we apply the Iso-Seq method (long-read RNA sequencing) to detect full-length isoforms and the new IsoPhase algorithm to retrieve allele-specific isoform information for two avian models of vocal learning, Anna’s hummingbird (Calypte anna) and zebra finch (Taeniopygia guttata).


June 1, 2021  |  

Scalability and reliability improvements to the Iso-Seq analysis pipeline enables higher throughput sequencing of full-length cancer transcripts

The characterization of gene expression profiles via transcriptome sequencing has proven to be an important tool for characterizing how genomic rearrangements in cancer affect the biological pathways involved in cancer progression and treatment response. More recently, better resolution of transcript isoforms has shown that this additional level of information may be useful in stratifying patients into cancer subtypes with different outcomes and responses to treatment.1 The Iso-Seq protocol developed at PacBio is uniquely able to deliver full-length, high-quality cDNA sequences, allowing the unambiguous determination of splice variants, identifying potential biomarkers and yielding new insights into gene fusion events. Recent improvements to the Iso-Seq bioinformatics pipeline increases the speed and scalability of data analysis while boosting the reliability of isoform detection and cross-platform usability. Here we report evaluation of Sequel Iso-Seq runs of human UHRR samples with spiked-in synthetic RNA controls and show that the new pipeline is more CPU efficient and recovers more human and synthetic isoforms while reducing the number of false positives. We also share the results of sequencing the well-characterized HCC-1954 breast cancer and normal breast cell lines, which will be made publicly available. Combined with the recent simplification of the Iso-Seq sample preparation2, the new analysis pipeline completes a streamlined workflow for revealing the most comprehensive picture of transcriptomes at the throughput needed to characterize cancer samples.


April 21, 2020  |  

Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases.

The widespread occurrence of repetitive stretches of DNA in genomes of organisms across the tree of life imposes fundamental challenges for sequencing, genome assembly, and automated annotation of genes and proteins. This multi-level problem can lead to errors in genome and protein databases that are often not recognized or acknowledged. As a consequence, end users working with sequences with repetitive regions are faced with ‘ready-to-use’ deposited data whose trustworthiness is difficult to determine, let alone to quantify. Here, we provide a review of the problems associated with tandem repeat sequences that originate from different stages during the sequencing-assembly-annotation-deposition workflow, and that may proliferate in public database repositories affecting all downstream analyses. As a case study, we provide examples of the Atlantic cod genome, whose sequencing and assembly were hindered by a particularly high prevalence of tandem repeats. We complement this case study with examples from other species, where mis-annotations and sequencing errors have propagated into protein databases. With this review, we aim to raise the awareness level within the community of database users, and alert scientists working in the underlying workflow of database creation that the data they omit or improperly assemble may well contain important biological information valuable to others. © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.


April 21, 2020  |  

The bracteatus pineapple genome and domestication of clonally propagated crops.

Domestication of clonally propagated crops such as pineapple from South America was hypothesized to be a ‘one-step operation’. We sequenced the genome of Ananas comosus var. bracteatus CB5 and assembled 513?Mb into 25 chromosomes with 29,412 genes. Comparison of the genomes of CB5, F153 and MD2 elucidated the genomic basis of fiber production, color formation, sugar accumulation and fruit maturation. We also resequenced 89 Ananas genomes. Cultivars ‘Smooth Cayenne’ and ‘Queen’ exhibited ancient and recent admixture, while ‘Singapore Spanish’ supported a one-step operation of domestication. We identified 25 selective sweeps, including a strong sweep containing a pair of tandemly duplicated bromelain inhibitors. Four candidate genes for self-incompatibility were linked in F153, but were not functional in self-compatible CB5. Our findings support the coexistence of sexual recombination and a one-step operation in the domestication of clonally propagated crops. This work guides the exploration of sexual and asexual domestication trajectories in other clonally propagated crops.


April 21, 2020  |  

Haplotype-Resolved Cattle Genomes Provide Insights Into Structural Variation and Adaptation

We present high quality, phased genome assemblies representative of taurine and indicine cattle, subspecies that differ markedly in productivity-related traits and environmental adaptation. We report a new haplotype-aware scaffolding and polishing pipeline using contigs generated by the trio binning method to produce haplotype-resolved, chromosome-level genome assemblies of Angus (taurine) and Brahman (indicine) cattle breeds. These assemblies were used to identify structural and copy number variants that differentiate the subspecies and we found variant detection was sensitive to the specific reference genome chosen. Six gene families with immune related functions are expanded in the indicine lineage. Assembly of the genomes of both subspecies from a single individual enabled transcripts to be phased to detect allele-specific expression, and to study genome-wide selective sweeps. An indicus-specific extra copy of fatty acid desaturase is under positive selection and may contribute to indicine adaptation to heat and drought.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.