Menu
July 7, 2019  |  

Complete genome sequence of Paenibacillus polymyxa strain Sb3-1, a soilborne bacterium with antagonistic activity toward plant pathogens.

The genome of Paenibacillus polymyxa Sb3-1, a strain that shows antagonistic activities against pathogenic fungi and bacteria, consists of one 5.6-Mb circular chromosome and two plasmids of 223 kb and 8 kb. The genome reveals several genes that potentially contribute to its antagonistic and plant growth promotion activity. Copyright © 2015 Rybakova et al.


July 7, 2019  |  

Genome sequence of the Drosophila melanogaster male-killing Spiroplasma strain MSRO endosymbiont.

Spiroplasmas are helical and motile members of a cell wall-less eubacterial group called Mollicutes. Although all spiroplasmas are associated with arthropods, they exhibit great diversity with respect to both their modes of transmission and their effects on their hosts; ranging from horizontally transmitted pathogens and commensals to endosymbionts that are transmitted transovarially (i.e., from mother to offspring). Here we provide the first genome sequence, along with proteomic validation, of an endosymbiotic inherited Spiroplasma bacterium, the Spiroplasma poulsonii MSRO strain harbored by Drosophila melanogaster. Comparison of the genome content of S. poulsonii with that of horizontally transmitted spiroplasmas indicates that S. poulsonii has lost many metabolic pathways and transporters, demonstrating a high level of interdependence with its insect host. Consistent with genome analysis, experimental studies showed that S. poulsonii metabolizes glucose but not trehalose. Notably, trehalose is more abundant than glucose in Drosophila hemolymph, and the inability to metabolize trehalose may prevent S. poulsonii from overproliferating. Our study identifies putative virulence genes, notably, those for a chitinase, the H2O2-producing glycerol-3-phosphate oxidase, and enzymes involved in the synthesis of the eukaryote-toxic lipid cardiolipin. S. poulsonii also expresses on the cell membrane one functional adhesion-related protein and two divergent spiralin proteins that have been implicated in insect cell invasion in other spiroplasmas. These lipoproteins may be involved in the colonization of the Drosophila germ line, ensuring S. poulsonii vertical transmission. The S. poulsonii genome is a valuable resource to explore the mechanisms of male killing and symbiont-mediated protection, two cardinal features of many facultative endosymbionts.Most insect species, including important disease vectors and crop pests, harbor vertically transmitted endosymbiotic bacteria. These endosymbionts play key roles in their hosts’ fitness, including protecting them against natural enemies and manipulating their reproduction in ways that increase the frequency of symbiont infection. Little is known about the molecular mechanisms that underlie these processes. Here, we provide the first genome draft of a vertically transmitted male-killing Spiroplasma bacterium, the S. poulsonii MSRO strain harbored by D. melanogaster. Analysis of the S. poulsonii genome was complemented by proteomics and ex vivo metabolic experiments. Our results indicate that S. poulsonii has reduced metabolic capabilities and expresses divergent membrane lipoproteins and potential virulence factors that likely participate in Spiroplasma-host interactions. This work fills a gap in our knowledge of insect endosymbionts and provides tools with which to decipher the interaction between Spiroplasma bacteria and their well-characterized host D. melanogaster, which is emerging as a model of endosymbiosis. Copyright © 2015 Paredes et al.


July 7, 2019  |  

Complete genome sequence of Pragia fontium 24613, an environmental bacterium from the family Enterobacteriaceae.

The complete genome sequence of Pragia fontium 24613 was determined using PacBio RSII, Roche 454, and SOLiD sequencing. A total of 3,579 genes were predicted, including 3,338 protein-coding sequences and 146 pseudogenes. This is the first whole-genome sequence of a strain belonging to the environmental genera of the family Enterobacteriaceae. Copyright © 2015 Snopková et al.


July 7, 2019  |  

Common cell shape evolution of two nasopharyngeal pathogens.

Respiratory infectious diseases are the third cause of worldwide death. The nasopharynx is the portal of entry and the ecological niche of many microorganisms, of which some are pathogenic to humans, such as Neisseria meningitidis and Moraxella catarrhalis. These microbes possess several surface structures that interact with the actors of the innate immune system. In our attempt to understand the past evolution of these bacteria and their adaption to the nasopharynx, we first studied differences in cell wall structure, one of the strongest immune-modulators. We were able to show that a modification of peptidoglycan (PG) composition (increased proportion of pentapeptides) and a cell shape change from rod to cocci had been selected for along the past evolution of N. meningitidis. Using genomic comparison across species, we correlated the emergence of the new cell shape (cocci) with the deletion, from the genome of N. meningitidis ancestor, of only one gene: yacF. Moreover, the reconstruction of this genetic deletion in a bacterium harboring the ancestral version of the locus together with the analysis of the PG structure, suggest that this gene is coordinating the transition from cell elongation to cell division. Accompanying the loss of yacF, the elongation machinery was also lost by several of the descendants leading to the change in the PG structure observed in N. meningitidis. Finally, the same evolution was observed for the ancestor of M. catarrhalis. This suggests a strong selection of these genetic events during the colonization of the nasopharynx. This selection may have been forced by the requirement of evolving permissive interaction with the immune system, the need to reduce the cellular surface exposed to immune attacks without reducing the intracellular storage capacity, or the necessity to better compete for adhesion to target cells.


July 7, 2019  |  

The assembly and characterisation of two structurally distinct cattle MHC class I haplotypes point to the mechanisms driving diversity.

In cattle, there are six classical MHC class I genes that are variably present between different haplotypes. Almost all known haplotypes contain between one and three genes, with an allele of Gene 2 present on the vast majority. However, very little is known about the sequence and therefore structure and evolutionary history of this genomic region. To address this, we have refined the MHC class I region in the Hereford cattle genome assembly and sequenced a complete A14 haplotype from a homozygous Holstein. Comparison of the two haplotypes revealed extensive variation within the MHC class Ia region, but not within the flanking regions, with each gene contained within a conserved 63- to 68-kb sequence block. This variable region appears to have undergone block gene duplication and likely deletion at regular breakpoints, suggestive of a site-specific mechanism. Phylogenetic analysis using complete gene sequences provided evidence of allelic diversification via gene conversion, with breakpoints between each of the extracellular domains that were associated with high guanine-cytosine (GC) content. Advancing our knowledge of cattle MHC class I evolution will help inform investigations of cattle genetic diversity and disease resistance.


July 7, 2019  |  

Draft genome sequence of Streptomyces sp. strain Wb2n-11, a desert isolate with broad-spectrum antagonism against soilborne phytopathogens.

Streptomyces sp. strain Wb2n-11, isolated from native desert soil, exhibited broad-spectrum antagonism against plant pathogenic fungi, bacteria, and nematodes. The 8.2-Mb draft genome reveals genes putatively responsible for its promising biocontrol activity and genes which enable the soil bacterium to directly interact beneficially with plants. Copyright © 2015 Köberl et al.


July 7, 2019  |  

Draft genome sequence of Paenibacillus polymyxa strain Mc5Re-14, an antagonistic root endophyte of Matricaria chamomilla.

Paenibacillus polymyxa strain Mc5Re-14 was isolated from the inner root tissue of Matricaria chamomilla (German chamomile). Mc5Re-14 revealed promising in vitro antagonistic activity against plant and opportunistic human pathogens. The 6.0-Mb draft genome reveals genes putatively involved in pathogen suppression and direct and indirect plant growth promotion. Copyright © 2015 Köberl et al.


July 7, 2019  |  

De novo genome sequence of Yersinia aleksiciae Y159T.

We report here on the genome sequence of Yersinia aleksiciae Y159(T), isolated in Finland in 1981. The genome has a size of 4 Mb, a G+C content of 49%, and is predicted to contain 3,423 coding sequences. Copyright © 2015 Sprague and Neubauer.


July 7, 2019  |  

Complete genome sequence of Clostridium pasteurianum NRRL B-598, a non-type strain producing butanol.

The strain Clostridium pasteurianum NRRL B-598 is non-type, oxygen tolerant, spore-forming, mesophilic and heterofermentative strain with high hydrogen production and ability of acetone-butanol fermentation (ethanol production being negligible). Here, we present the annotated complete genome sequence of this bacterium, replacing the previous draft genome assembly. The genome consisting of a single circular 6,186,879bp chromosome with no plasmid was determined using PacBio RSII and Roche 454 sequencing. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

In vivo evolution of bacterial resistance in two cases of Enterobacter aerogenes infections during treatment with imipenem.

Infections caused by multidrug resistant (MDR) bacteria are a major concern worldwide. Changes in membrane permeability, including decreased influx and/or increased efflux of antibiotics, are known as key contributors of bacterial MDR. Therefore, it is of critical importance to understand molecular mechanisms that link membrane permeability to MDR in order to design new antimicrobial strategies. In this work, we describe genotype-phenotype correlations in Enterobacter aerogenes, a clinically problematic and antibiotic resistant bacterium. To do this, series of clinical isolates have been periodically collected from two patients during chemotherapy with imipenem. The isolates exhibited different levels of resistance towards multiple classes of antibiotics, consistently with the presence or the absence of porins and efflux pumps. Transport assays were used to characterize membrane permeability defects. Simultaneous genome-wide analysis allowed the identification of putative mutations responsible for MDR. The genome of the imipenem-susceptible isolate G7 was sequenced to closure and used as a reference for comparative genomics. This approach uncovered several loci that were specifically mutated in MDR isolates and whose products are known to control membrane permeability. These were omp35 and omp36, encoding the two major porins; rob, encoding a global AraC-type transcriptional activator; cpxA, phoQ and pmrB, encoding sensor kinases of the CpxRA, PhoPQ and PmrAB two-component regulatory systems, respectively. This report provides a comprehensive analysis of membrane alterations relative to mutational steps in the evolution of MDR of a recognized nosocomial pathogen.


July 7, 2019  |  

Complete genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium of Calendula officinalis.

The genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium (PGPR) with broad-spectrum antagonistic activity against plant-pathogenic fungi, bacteria, and nematodes, consists of a single 3.9-Mb circular chromosome. The genome reveals genes putatively responsible for its promising biocontrol and PGP properties. Copyright © 2015 Köberl et al.


July 7, 2019  |  

Draft genome sequence of a nitrate-reducing, o-phthalate degrading bacterium, Azoarcus sp. strain PA01(T).

Azoarcus sp. strain PA01(T) belongs to the genus Azoarcus, of the family Rhodocyclaceae within the class Betaproteobacteria. It is a facultatively anaerobic, mesophilic, non-motile, Gram-stain negative, non-spore-forming, short rod-shaped bacterium that was isolated from a wastewater treatment plant in Constance, Germany. It is of interest because of its ability to degrade o-phthalate and a wide variety of aromatic compounds with nitrate as an electron acceptor. Elucidation of the o-phthalate degradation pathway may help to improve the treatment of phthalate-containing wastes in the future. Here, we describe the features of this organism, together with the draft genome sequence information and annotation. The draft genome consists of 4 contigs with 3,908,301 bp and an overall G?+?C content of 66.08 %. Out of 3,712 total genes predicted, 3,625 genes code for proteins and 87 genes for RNAs. The majority of the protein-encoding genes (83.51 %) were assigned a putative function while those remaining were annotated as hypothetical proteins.


July 7, 2019  |  

Draft genome sequence of Thermus scotoductus strain K1, Isolated from a geothermal spring in Karvachar, Nagorno Karabakh.

The 2,379,636-bp draft genome sequence of Thermus scotoductus strain K1, isolated from geothermal spring outlet located in the Karvachar region in Nagorno Karabakh is presented. Strain K1 shares about 80% genome sequence similarity with T. scotoductus strain SA-01, recovered from a deep gold mine in South Africa. Copyright © 2015 Saghatelyan et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.