At Cold Spring Harbor Laboratory, scientists used SMRT Sequencing to decode one of the most challenging cancer genomes ever encountered. Along the way, they built a portfolio of open-access analysis tools that will help researchers everywhere make structural variation discoveries with long-read sequencing data.
Early detection of colorectal cancer (CRC) and its precursor lesions (adenomas) is crucial to reduce mortality rates. The fecal immunochemical test (FIT) is a non-invasive CRC screening test that detects the blood-derived protein hemoglobin. However, FIT sensitivity is suboptimal especially in detection of CRC precursor lesions. As adenoma-to-carcinoma progression is accompanied by alternative splicing, tumor-specific proteins derived from alternatively spliced RNA transcripts might serve as candidate biomarkers for CRC detection.
Tremendous flexibility is maintained in the human proteome via alternative splicing, and cancer genomes often subvert this flexibility to promote survival. Identification and annotation of cancer-specific mRNA isoforms is critical to understanding how mutations in the genome affect the biology of cancer cells. While microarrays and other NGS-based methods have become useful for studying transcriptomes, these technologies yield short, fragmented transcripts that remain a challenge for accurate, complete reconstruction of splice variants. The Iso-Seq method developed at PacBio offers the only solution for direct sequencing of full-length, single-molecule cDNA sequences needed to discover biomarkers for early detection and cancer stratification,…
In this webinar, Emily Hatas of PacBio shares information about the applications and benefits of SMRT Sequencing in plant and animal biology, agriculture, and industrial research fields. This session contains an overview of several applications: whole-genome sequencing for de novo assembly; transcript isoform sequencing (Iso-Seq) method for genome annotation; targeted sequencing solutions; and metagenomics and microbial interactions. High-level workflows and best practices are discussed for key applications.
In this PacBio User Group Meeting presentation, Nic Wheeler of University of Wisconsin-Madison, speaks about RNA sequencing for filarial nematodes associated with understudied tropical diseases. His team used Iso-Seq analysis to improve gene models and achieve better transcriptome coverage for these worms, which typically have poorly annotated and fragmented genome assemblies. While getting enough RNA to study is a technical challenge, the group still managed to generate full-length isoforms, many of which were novel or contained novel junctions.
In this ASHG 2020 CoLab presentation hear Principal Scientists, Aaron Wenger and Elizabeth Tseng share how highly accurate long reads (HiFi reads) provide comprehensive variant detection for both genomes and transcriptomes. Aaron Wenger describes how new improvements in protocols and analysis methods have increased scalability and accuracy of variant calling. As demonstrated in the precisionFDA Truth Challenge V2, HiFi reads (>99% accurate, 15 kb – 20 kb) now outperform short reads for single nucleotide and structural variant calling and match for small indels. This includes calling >30,000 small variants and >10,000 structural variants missed by short reads, many in medically…
Long-read mRNA sequencing such as PacBio’s Iso-Seq method offer high-throughput transcriptome profiling that circumvents the transcript assembly problem by sequencing full-length cDNA. The Iso-Seq method has emerged as the most reliable technology for fully characterizing isoforms and, in turn, help shed light on underlying disease mechanisms. Here, we have utilized the Iso-Seq method to sequence an Alzheimer’s disease whole brain?sample. This is a devastating neurodegenerative disease that affects ~44 million people worldwide, making it the most common form of dementia. Studies looking into disease mechanism have shown that changes in gene expression due to alternative splicing likely contribute to the…
Transcriptome sequencing has proven to be an important tool for understanding the biological changes in cancer genomes including the consequences of structural rearrangements. Short read sequencing has been the method of choice, as the high throughput at low cost allows for transcript quantitation and the detection of even rare transcripts. However, the reads are generally too short to reconstruct complete isoforms. Conversely, long-read approaches can provide unambiguous full-length isoforms, but lower throughput has complicated quantitation and high RNA input requirements has made working with cancer samples challenging. Recently, the COLO 829 cell line was sequenced to 50-fold coverage with PacBio…
Single cell RNA-seq (scRNA-seq) is an emerging field for characterizing cell heterogeneity in complex tissues. However, most scRNA-seq methodologies are limited to gene count information due to short read lengths. Here, we combine the microfluidics scRNA-seq technique, Drop-Seq, with PacBio Single Molecule, Real-Time (SMRT) Sequencing to generate full-length transcript isoforms that can be confidently assigned to individual cells. We generated single cell Iso-Seq (scIso-Seq) libraries for chimp and human cerebral organoid samples on the Dolomite Nadia platform and sequenced each library with two SMRT Cells 8M on the PacBio Sequel II System. We developed a bioinformatics pipeline to identify, classify,…
The PacBio Iso-Seq method produces high-quality, full-length transcripts and can characterize a whole transcriptome with a single SMRT Cell 8M. We sequenced an Alzheimer whole brain sample on a single SMRT Cell 8M on the Sequel II System. Using the Iso-Seq bioinformatics pipeline followed by SQANTI2 analysis, we detected 162,290 transcripts for 17,670 genes up to 14 kb in length. More than 60% of the transcripts are novel isoforms, the vast majority of which have supporting cage peak data and polyadenylation signals, demonstrating the utility of long-read sequencing for human disease research.
PacBio’s new Iso-Seq technology allows for rapid generation of full-length cDNA sequences without the need for assembly steps. The technology was tested on leaf mRNA from two model O. sativa ssp. indica cultivars – Minghui 63 and Zhenshan 97. Even though each transcriptome was not exhaustively sequenced, several thousand isoforms described genes over a wide size range, most of which are not present in any currently available FL cDNA collection. In addition, the lack of an assembly requirement provides direct and immediate access to complete mRNA sequences and rapid unraveling of biological novelties.
Recent advances in next-generation sequencing have led to an increased use of formalin-fixed and paraffin-embedded (FFPE) tissues for medical samples in disease and scientific research. Single Molecule, Real-Time (SMRT) Sequencing offers a unique advantage for direct analysis of FFPE samples without amplification. However, obtaining ample long-read information from FFPE samples has been a challenge due to the quality and quantity of the extracted DNA. FFPE samples often contain damaged sites, including breaks in the backbone and missing or altered nucleotide bases, which directly impact sequencing and target enrichment. Additionally, the quality and quantity of the recovered DNA vary depending on…
Early detection of colorectal cancer (CRC) and its precursor lesions (adenomas) is crucial to reduce mortality rates. The fecal immunochemical test (FIT) is a non-invasive CRC screening test that detects the blood-derived protein hemoglobin. However, FIT sensitivity is suboptimal especially in detection of CRC precursor lesions. As adenoma-to-carcinoma progression is accompanied by alternative splicing, tumor-specific proteins derived from alternatively spliced RNA transcripts might serve as candidate biomarkers for CRC detection.
Tremendous flexibility is maintained in the human proteome via alternative splicing, and cancer genomes often subvert this flexibility to promote survival. Identification and annotation of cancer-specific mRNA isoforms is critical to understanding how mutations in the genome affect the biology of cancer cells. While microarrays and other NGS-based methods have become useful for studying transcriptomes, these technologies yield short, fragmented transcripts that remain a challenge for accurate, complete reconstruction of splice variants. In cancer proteomics studies, the identification of biomarkers from mass spectroscopy data is often limited by incomplete gene isoform expression information to support protein to transcript mapping. The…
Incomplete annotation of genomes represents a major impediment to understanding biological processes, functional differences between species, and evolutionary mechanisms. Often, genes that are large, embedded within duplicated genomic regions, or associated with repeats are difficult to study by short-read expression profiling and assembly. In addition, most genes in eukaryotic organisms produce alternatively spliced isoforms, broadening the diversity of proteins encoded by the genome, which are difficult to resolve with short-read methods. Short-read RNA sequencing (RNA-seq) works by physically shearing transcript isoforms into smaller pieces and bioinformatically reassembling them, leaving opportunity for misassembly or incomplete capture of the full diversity of…