X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Wednesday, January 6, 2021

Webinar: A HiFi View – Sequencing the gut microbiome with highly accurate long reads

In this webinar, Dr. Ashby gives attendees a brief update on PacBio’s metagenomics solutions on the Sequel II System. Then, Dr. Ma, University of Maryland School of Medicine, discusses her work using long read sequencing to identify high-resolution microbial biomarkers associated with leaky gut syndrome in premature infants. Finally, Dr. Weinstock, The Jackson Laboratory, talks about the potential of highly accurate long reads to enable strain-level resolution of the human gut microbiome by resolving intraspecies variation in multiple copies of the 16S gene.

Read More »

Tuesday, December 22, 2020

High-resolution evaluation of gut microbiota associated with intestinal maturation in early preterm neonates

Leaky gut, or intestinal barrier immaturity with elevated intestinal permeability, is the proximate cause of susceptibility to necrotizing enterocolitis in preterm neonates. We recently revealed intestinal barrier maturation was associated with exclusive breastfeeding, less antibiotic exposure, most importantly, altered composition of the gut microbiota. However, sequencing short regions of 16S rRNA gene amplicon failed to identify the specific bacterial groups associated with improved or aberrant intestinal permeability. In this study, we performed high-throughput amplicon sequencing of the full length 16S rRNA gene with single-nucleotide resolution for a cohort of 66 preterm neonates born at 24-33 weeks of gestation who had…

Read More »

Tuesday, December 22, 2020

Microbiome profiling at the strain level using rRNA amplicons

Strain level microbiome profiling is needed for a full understanding of how microbial communities influence human health. Microbiome profiling of rRNA gene amplicons is a well-understood method that is rapid and inexpensive, but standard 16S rRNA gene methods generally cannot differentiate closely related strains. Whole genome/shotgun microbiome profiling is considered a higher-resolution alternative, but with decreased throughput and significantly increased sequencing costs and analysis burden. With both methods there are also challenges with microbial lysis, DNA preparation, and taxonomic analysis. Specialized microbiome-focused protocols were developed to achieve strain-level taxonomic differentiation using a rapid, high throughput rRNA gene assay. The protocol…

Read More »

Tuesday, December 22, 2020

Unbiased characterization of metagenome composition and function using HiFi sequencing on the PacBio Sequel II System

Recent work comparing metagenomic sequencing methods indicates that a comprehensive picture of the taxonomic and functional diversity of complex communities will be difficult to achieve with short-read technology alone. While the lower cost of short reads has enabled greater sequencing depth, the greater contiguity of long-read assemblies and lack of GC bias in SMRT Sequencing has enabled better gene finding. However, since long-read assembly requires high coverage for error correction, the benefits of unbiased coverage have in the past been lost for low abundance species. SMRT Sequencing performance improvements and the introduction of the Sequel II System has enabled a…

Read More »

Tuesday, December 22, 2020

Unbiased characterization of metagenome composition and function using HiFi sequencing on the PacBio Sequel II System

Recent work comparing metagenomic sequencing methods indicates that a comprehensive picture of the taxonomic and functional diversity of complex communities will be difficult to achieve with one sequencing technology alone. While the lower cost of short reads has enabled greater sequencing depth, the greater contiguity of long-read assemblies and lack of GC bias in SMRT Sequencing has enabled better gene finding. However, since long-read assembly typically requires high coverage for error correction, these benefits have in the past been lost for low-abundance species. The introduction of the Sequel II System has enabled a new, higher throughput, assembly-optional data type that…

Read More »

Tuesday, December 22, 2020

Comparative metagenome-assembled genome analysis of “Candidatus Lachnocurva vaginae”, formerly known as Bacterial Vaginosis Associated bacterium – 1 (BVAB1)

Bacterial Vaginosis Associated bacterium 1 (BVAB1) is an as-yet uncultured bacterial species found in the human vagina that belongs to the family Lachnospiraceae within the order Clostridiales. As its name suggests, this bacterium is often associated with bacterial vaginosis (BV), a common vaginal disorder that has been shown to increase a woman’s risk for HIV, Chlamydia trachomatis, and Neisseria gonorrhoeae infections as well as preterm birth. Further, BVAB1 is associated with the persistence of BV following metronidazole treatment, increased vaginal inflammation, and adverse obstetrics outcomes. There is no available complete genome sequence of BVAB1, which has made it di?cult to…

Read More »

Tuesday, December 22, 2020

Accurately surveying uncultured microbial species with SMRT Sequencing

Background: Microbial ecology is reshaping our understanding of the natural world by revealing the large phylogenetic and functional diversity of microbial life. However the vast majority of these microorganisms remain poorly understood, as most cultivated representatives belong to just four phylogenetic groups and more than half of all identified phyla remain uncultivated. Characterization of this microbial ‘dark matter’ will thus greatly benefit from new metagenomic methods for in situ analysis. For example, sensitive high throughput methods for the characterization of community composition and structure from the sequencing of conserved marker genes. Methods: Here we utilize Single Molecule Real-Time (SMRT) sequencing…

Read More »

Tuesday, December 22, 2020

Developments in PacBio metagenome sequencing: Shotgun whole genomes and full-length 16S.

The assembly of metagenomes is dramatically improved by the long read lengths of SMRT Sequencing. This is demonstrated in an experimental design to sequence a mock community from the Human Microbiome Project, and assemble the data using the hierarchical genome assembly process (HGAP) at Pacific Biosciences. Results of this analysis are promising, and display much improved contiguity in the assembly of the mock community as compared to publicly available short-read data sets and assemblies. Additionally, the use of base modification information to make further associations between contigs provides additional data to improve assemblies, and to distinguish between members within a…

Read More »

Tuesday, December 22, 2020

Low-input long-read sequencing for complete microbial genomes and metagenomic community analysis.

Microbial genome sequencing can be done quickly, easily, and efficiently with the PacBio sequencing instruments, resulting in complete de novo assemblies. Alternative protocols have been developed to reduce the amount of purified DNA required for SMRT Sequencing, to broaden applicability to lower-abundance samples. If 50-100 ng of microbial DNA is available, a 10-20 kb SMRTbell library can be made. A 2 kb SMRTbell library only requires a few ng of gDNA when carrier DNA is added to the library. The resulting libraries can be loaded onto multiple SMRT Cells, yielding more than enough data for complete assembly of microbial genomes…

Read More »

Tuesday, December 22, 2020

Profiling metagenomic communities using circular consensus and Single Molecule, Real-Time Sequencing.

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments generally use short-read, second-generation sequencing, which results in data processing difficulties. For example, reads less than 1 kb in length will likely not cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members…

Read More »

Tuesday, December 22, 2020

Analysis of full-length metagenomic 16S genes by Single Molecule, Real-Time Sequencing

High-throughput sequencing of the complete 16S rRNA gene has become a valuable tool for characterizing microbial communities. However, the short reads produced by second-generation sequencing cannot provide taxonomic classification below the genus level. In this study, we demonstrate the capability of PacBio’s Single Molecule, Real-Time (SMRT) Sequencing to generate community profiles using mock microbial community samples from BEI Resources. We also evaluate multiplexing capabilities using PacBio barcodes on pooled samples comprising heterogeneous 16S amplicon populations representing soil, fecal, and mock communities.

Read More »

Tuesday, December 22, 2020

Profiling metagenomic communities using circular consensus and Single Molecule, Real-Time Sequencing

There are many sequencing-based approaches to understanding complex metagenomic communities, spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments require a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, Single Molecule, Real-Time (SMRT) Sequencing reads in the 1-2 kb range, with >99% consensus accuracy, can be efficiently generated for low amounts of input DNA, e.g. as little as 10 ng of input DNA sequenced in 4 SMRT Cells can generate…

Read More »

Tuesday, December 22, 2020

Profiling the microbiome in fecal microbiota transplantation using circular consensus and Single Molecule, Real-Time Sequencing

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR. Whole-sample shotgun experiments generally use short-read sequencing, which results in data processing difficulties. For example, reads less than 500bp in length will rarely cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members may not be represented…

Read More »

Tuesday, December 22, 2020

Minimization of chimera formation and substitution errors in full-length 16S PCR amplification

The constituents and intra-communal interactions of microbial populations have garnered increasing interest in areas such as water remediation, agriculture and human health. One popular, efficient method of profiling communities is to amplify and sequence the evolutionarily conserved 16S rRNA sequence. Currently, most targeted amplification focuses on short, hypervariable regions of the 16S sequence. Distinguishing information not spanned by the targeted region is lost and species-level classification is often not possible. SMRT Sequencing easily spans the entire 1.5 kb 16S gene, and in combination with highly-accurate single-molecule sequences, can improve the identification of individual species in a metapopulation. However, when amplifying…

Read More »

Tuesday, December 22, 2020

Low-input long-read sequencing for complete microbial genomes and metagenomic community analysis

Microbial genome sequencing can be done quickly, easily, and efficiently with the PacBio sequencing instruments, resulting in complete de novo assemblies. Alternative protocols have been developed to reduce the amount of purified DNA required for SMRT Sequencing, to broaden applicability to lower-abundance samples. If 50-100 ng of microbial DNA is available, a 10-20 kb SMRTbell library can be made. The resulting library can be loaded onto multiple SMRT Cells, yielding more than enough data for complete assembly of microbial genomes using the SMRT Portal assembly program HGAP, plus base modification analysis. The entire process can be done in less than…

Read More »

1 2 3 4 9

Subscribe for blog updates:

Archives