October 23, 2019  |  

The genome of common long-arm octopus Octopus minor.

The common long-arm octopus (Octopus minor) is found in mudflats of subtidal zones and faces numerous environmental challenges. The ability to adapt its morphology and behavioral repertoire to diverse environmental conditions makes the species a promising model for understanding genomic adaptation and evolution in cephalopods.The final genome assembly of O. minor is 5.09 Gb, with a contig N50 size of 197 kb and longest size of 3.027 Mb, from a total of 419 Gb raw reads generated using the Pacific Biosciences RS II platform. We identified 30,010 genes; 44.43% of the genome is composed of repeat elements. The genome-wide phylogenetic tree indicated the divergence time between O. minor and Octopus bimaculoides was estimated to be 43 million years ago based on single-copy orthologous genes. In total, 178 gene families are expanded in O. minor in the 14 bilaterian species.We found that the O. minor genome was larger than that of closely related O. bimaculoides, and this difference could be explained by enlarged introns and recently diversified transposable elements. The high-quality O. minor genome assembly provides a valuable resource for understanding octopus genome evolution and the molecular basis of adaptations to mudflats.


September 22, 2019  |  

Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics.

Short read massive parallel sequencing has emerged as a standard diagnostic tool in the medical setting. However, short read technologies have inherent limitations such as GC bias, difficulties mapping to repetitive elements, trouble discriminating paralogous sequences, and difficulties in phasing alleles. Long read single molecule sequencers resolve these obstacles. Moreover, they offer higher consensus accuracies and can detect epigenetic modifications from native DNA. The first commercially available long read single molecule platform was the RS system based on PacBio’s single molecule real-time (SMRT) sequencing technology, which has since evolved into their RSII and Sequel systems. Here we capsulize how SMRT sequencing is revolutionizing constitutional, reproductive, cancer, microbial and viral genetic testing.© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.


September 22, 2019  |  

De novo assembly and phasing of dikaryotic genomes from two isolates of Puccinia coronata f. sp. avenae, the causal agent of oat crown rust.

Oat crown rust, caused by the fungus Pucinnia coronata f. sp. avenae, is a devastating disease that impacts worldwide oat production. For much of its life cycle, P. coronata f. sp. avenae is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting the importance of understanding haplotype diversity in this species. We generated highly contiguous de novo genome assemblies of two P. coronata f. sp. avenae isolates, 12SD80 and 12NC29, from long-read sequences. In total, we assembled 603 primary contigs for 12SD80, for a total assembly length of 99.16 Mbp, and 777 primary contigs for 12NC29, for a total length of 105.25 Mbp; approximately 52% of each genome was assembled into alternate haplotypes. This revealed structural variation between haplotypes in each isolate equivalent to more than 2% of the genome size, in addition to about 260,000 and 380,000 heterozygous single-nucleotide polymorphisms in 12SD80 and 12NC29, respectively. Transcript-based annotation identified 26,796 and 28,801 coding sequences for isolates 12SD80 and 12NC29, respectively, including about 7,000 allele pairs in haplotype-phased regions. Furthermore, expression profiling revealed clusters of coexpressed secreted effector candidates, and the majority of orthologous effectors between isolates showed conservation of expression patterns. However, a small subset of orthologs showed divergence in expression, which may contribute to differences in virulence between 12SD80 and 12NC29. This study provides the first haplotype-phased reference genome for a dikaryotic rust fungus as a foundation for future studies into virulence mechanisms in P. coronata f. sp. avenaeIMPORTANCE Disease management strategies for oat crown rust are challenged by the rapid evolution of Puccinia coronata f. sp. avenae, which renders resistance genes in oat varieties ineffective. Despite the economic importance of understanding P. coronata f. sp. avenae, resources to study the molecular mechanisms underpinning pathogenicity and the emergence of new virulence traits are lacking. Such limitations are partly due to the obligate biotrophic lifestyle of P. coronata f. sp. avenae as well as the dikaryotic nature of the genome, features that are also shared with other important rust pathogens. This study reports the first release of a haplotype-phased genome assembly for a dikaryotic fungal species and demonstrates the amenability of using emerging technologies to investigate genetic diversity in populations of P. coronata f. sp. avenae. Copyright © 2018 Miller et al.


September 22, 2019  |  

The complete chloroplast genome of Chrysanthemum boreale (Asteraceae)

Chrysanthemum boreale is a perennial plant in the Asteraceae family that is native to eastern Asia and has both ornamental and herbal uses. Here, we determined the complete chloroplast genome sequence for C. boreale using long-read sequencing. The chloroplast genome was 151,012?bp and consisted of a large single copy (LSC) region (82,817?bp), a small single copy (SSC) region (18,281?bp) and two inverted repeats (IRs) (24,957?bp). It was predicted to contain 131 genes, including 87 protein-coding genes, eight rRNAs and 46 tRNAs. Phylogenetic analysis of chloroplast genomes clustered C. boreale with other Chrysanthemum and Asteraceae species.


September 22, 2019  |  

A graph-based approach to diploid genome assembly.

Constructing high-quality haplotype-resolved de novo assemblies of diploid genomes is important for revealing the full extent of structural variation and its role in health and disease. Current assembly approaches often collapse the two sequences into one haploid consensus sequence and, therefore, fail to capture the diploid nature of the organism under study. Thus, building an assembler capable of producing accurate and complete diploid assemblies, while being resource-efficient with respect to sequencing costs, is a key challenge to be addressed by the bioinformatics community.We present a novel graph-based approach to diploid assembly, which combines accurate Illumina data and long-read Pacific Biosciences (PacBio) data. We demonstrate the effectiveness of our method on a pseudo-diploid yeast genome and show that we require as little as 50× coverage Illumina data and 10× PacBio data to generate accurate and complete assemblies. Additionally, we show that our approach has the ability to detect and phase structural variants.https://github.com/whatshap/whatshap.Supplementary data are available at Bioinformatics online.


September 22, 2019  |  

Draft genome sequence of wild Prunus yedoensis reveals massive inter-specific hybridization between sympatric flowering cherries.

Hybridization is an important evolutionary process that results in increased plant diversity. Flowering Prunus includes popular cherry species that are appreciated worldwide for their flowers. The ornamental characteristics were acquired both naturally and through artificially hybridizing species with heterozygous genomes. Therefore, the genome of hybrid flowering Prunus presents important challenges both in plant genomics and evolutionary biology.We use long reads to sequence and analyze the highly heterozygous genome of wild Prunus yedoensis. The genome assembly covers >?93% of the gene space; annotation identified 41,294 protein-coding genes. Comparative analysis of the genome with 16 accessions of six related taxa shows that 41% of the genes were assigned into the maternal or paternal state. This indicates that wild P. yedoensis is an F1 hybrid originating from a cross between maternal P. pendula f. ascendens and paternal P. jamasakura, and it can be clearly distinguished from its confusing taxon, Yoshino cherry. A focused analysis of the S-locus haplotypes of closely related taxa distributed in a sympatric natural habitat suggests that reduced restriction of inter-specific hybridization due to strong gametophytic self-incompatibility is likely to promote complex hybridization of wild Prunus species and the development of a hybrid swarm.We report the draft genome assembly of a natural hybrid Prunus species using long-read sequencing and sequence phasing. Based on a comprehensive comparative genome analysis with related taxa, it appears that cross-species hybridization in sympatric habitats is an ongoing process that facilitates the diversification of flowering Prunus.


September 22, 2019  |  

Assembling the genome of the African wild rice Oryza longistaminata by exploiting synteny in closely related Oryza species.

The African wild rice species Oryza longistaminata has several beneficial traits compared to cultivated rice species, such as resistance to biotic stresses, clonal propagation via rhizomes, and increased biomass production. To facilitate breeding efforts and functional genomics studies, we de-novo assembled a high-quality, haploid-phased genome. Here, we present our assembly, with a total length of 351?Mb, of which 92.2% was anchored onto 12 chromosomes. We detected 34,389 genes and 38.1% of the genome consisted of repetitive content. We validated our assembly by a comparative linkage analysis and by examining well-characterized gene families. This genome assembly will be a useful resource to exploit beneficial alleles found in O. longistaminata. Our results also show that it is possible to generate a high-quality, functionally complete rice genome assembly from moderate SMRT read coverage by exploiting synteny in a closely related Oryza species.


September 22, 2019  |  

Genomic analysis of Picochlorum species reveals how microalgae may adapt to variable environments.

Understanding how microalgae adapt to rapidly changing environments is not only important to science but can help clarify the potential impact of climate change on the biology of primary producers. We sequenced and analyzed the nuclear genome of multiple Picochlorum isolates (Chlorophyta) to elucidate strategies of environmental adaptation. It was previously found that coordinated gene regulation is involved in adaptation to salinity stress, and here we show that gene gain and loss also play key roles in adaptation. We determined the extent of horizontal gene transfer (HGT) from prokaryotes and their role in the origin of novel functions in the Picochlorum clade. HGT is an ongoing and dynamic process in this algal clade with adaptation being driven by transfer, divergence, and loss. One HGT candidate that is differentially expressed under salinity stress is indolepyruvate decarboxylase that is involved in the production of a plant auxin that mediates bacteria-diatom symbiotic interactions. Large differences in levels of heterozygosity were found in diploid haplotypes among Picochlorum isolates. Biallelic divergence was pronounced in P. oklahomensis (salt plains environment) when compared with its closely related sister taxon Picochlorum SENEW3 (brackish water environment), suggesting a role of diverged alleles in response to environmental stress. Our results elucidate how microbial eukaryotes with limited gene inventories expand habitat range from mesophilic to halophilic through allelic diversity, and with minor but important contributions made by HGT. We also explore how the nature and quality of genome data may impact inference of nuclear ploidy.


September 22, 2019  |  

Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies.

Recent developments in third-gen long read sequencing and diploid-aware assemblers have resulted in the rapid release of numerous reference-quality assemblies for diploid genomes. However, assembly of highly heterozygous genomes is still problematic when regional heterogeneity is so high that haplotype homology is not recognised during assembly. This results in regional duplication rather than consolidation into allelic variants and can cause issues with downstream analysis, for example variant discovery, or haplotype reconstruction using the diploid assembly with unpaired allelic contigs.A new pipeline-Purge Haplotigs-was developed specifically for third-gen sequencing-based assemblies to automate the reassignment of allelic contigs, and to assist in the manual curation of genome assemblies. The pipeline uses a draft haplotype-fused assembly or a diploid assembly, read alignments, and repeat annotations to identify allelic variants in the primary assembly. The pipeline was tested on a simulated dataset and on four recent diploid (phased) de novo assemblies from third-generation long-read sequencing, and compared with a similar tool. After processing with Purge Haplotigs, haploid assemblies were less duplicated with minimal impact on genome completeness, and diploid assemblies had more pairings of allelic contigs.Purge Haplotigs improves the haploid and diploid representations of third-gen sequencing based genome assemblies by identifying and reassigning allelic contigs. The implementation is fast and scales well with large genomes, and it is less likely to over-purge repetitive or paralogous elements compared to alignment-only based methods. The software is available at https://bitbucket.org/mroachawri/purge_haplotigs under a permissive MIT licence.


September 22, 2019  |  

Cryptocurrencies and Zero Mode Wave guides: An unclouded path to a more contiguous Cannabis sativa L. genome assembly

We describe the use ofa Decentralized Autonomous Organization (DAO) to crypto- fund the single molecule sequencing and publication ofa Type ll Cannabis plant. This resulted in the construction of the most contiguous Cannabis genome assembly to date. The combined use of the Dash cryptocurrency, DAOs, and Pacific Biosciences sequencing delivered a 1.03 Gb genome with a N50 of 665Kb in 77 days from funding to public upload. This represents a 230 fold improvement in the contiguity of the first cannabis assemblies in 2011 and a 4 fold improvement over all cannabis assemblies to date. 34Gb ofadditional sequencing pushed the assembly to a N50 of 3.8Mb. Hi-C data from Phase Genomics further scaffolded the assembly to 35 contigs at an N50 of 74Mb but requires additional curation. The genome is partially phased and larger than previously reported (2N : 1.33Gb). The CBCA, THCA and CBDA synthase gene clusters have been phased onto respective contigs demonstrating tandem repeat expansions.


September 21, 2019  |  

Phased diploid genome assembly with single-molecule real-time sequencing.

While genome assembly projects have been successful in many haploid and inbred species, the assembly of noninbred or rearranged heterozygous genomes remains a major challenge. To address this challenge, we introduce the open-source FALCON and FALCON-Unzip algorithms (https://github.com/PacificBiosciences/FALCON/) to assemble long-read sequencing data into highly accurate, contiguous, and correctly phased diploid genomes. We generate new reference sequences for heterozygous samples including an F1 hybrid of Arabidopsis thaliana, the widely cultivated Vitis vinifera cv. Cabernet Sauvignon, and the coral fungus Clavicorona pyxidata, samples that have challenged short-read assembly approaches. The FALCON-based assemblies are substantially more contiguous and complete than alternate short- or long-read approaches. The phased diploid assembly enabled the study of haplotype structure and heterozygosities between homologous chromosomes, including the identification of widespread heterozygous structural variation within coding sequences.


September 21, 2019  |  

Population sequencing reveals clonal diversity and ancestral inbreeding in the grapevine cultivar Chardonnay.

Chardonnay is the basis of some of the world’s most iconic wines and its success is underpinned by a historic program of clonal selection. There are numerous clones of Chardonnay available that exhibit differences in key viticultural and oenological traits that have arisen from the accumulation of somatic mutations during centuries of asexual propagation. However, the genetic variation that underlies these differences remains largely unknown. To address this knowledge gap, a high-quality, diploid-phased Chardonnay genome assembly was produced from single-molecule real time sequencing, and combined with re-sequencing data from 15 different Chardonnay clones. There were 1620 markers identified that distinguish the 15 clones. These markers were reliably used for clonal identification of independently sourced genomic material, as well as in identifying a potential genetic basis for some clonal phenotypic differences. The predicted parentage of the Chardonnay haplomes was elucidated by mapping sequence data from the predicted parents of Chardonnay (Gouais blanc and Pinot noir) against the Chardonnay reference genome. This enabled the detection of instances of heterosis, with differentially-expanded gene families being inherited from the parents of Chardonnay. Most surprisingly however, the patterns of nucleotide variation present in the Chardonnay genome indicate that Pinot noir and Gouais blanc share an extremely high degree of kinship that has resulted in the Chardonnay genome displaying characteristics that are indicative of inbreeding.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.