April 21, 2020  |  

Defining transgene insertion sites and off-target effects of homology-based gene silencing informs the use of functional genomics tools in Phytophthora infestans.

DNA transformation and homology-based transcriptional silencing are frequently used to assess gene function in Phytophthora. Since unplanned side-effects of these tools are not well-characterized, we used P. infestans to study plasmid integration sites and whether knockdowns caused by homology-dependent silencing spreads to other genes. Insertions occurred both in gene-dense and gene-sparse regions but disproportionately near the 5′ ends of genes, which disrupted native coding sequences. Microhomology at the recombination site between plasmid and chromosome was common. Studies of transformants silenced for twelve different gene targets indicated that neighbors within 500-nt were often co-silenced, regardless of whether hairpin or sense constructs were employed and the direction of transcription of the target. However, cis-spreading of silencing did not occur in all transformants obtained with the same plasmid. Genome-wide studies indicated that unlinked genes with partial complementarity with the silencing-inducing transgene were not usually down-regulated. We learned that hairpin or sense transgenes were not co-silenced with the target in all transformants, which informs how screens for silencing should be performed. We conclude that transformation and gene silencing can be reliable tools for functional genomics in Phytophthora but must be used carefully, especially by testing for the spread of silencing to genes flanking the target.

April 21, 2020  |  

Interspecies conservation of organisation and function between nonhomologous regional centromeres.

Despite the conserved essential function of centromeres, centromeric DNA itself is not conserved. The histone-H3 variant, CENP-A, is the epigenetic mark that specifies centromere identity. Paradoxically, CENP-A normally assembles on particular sequences at specific genomic locations. To gain insight into the specification of complex centromeres, here we take an evolutionary approach, fully assembling genomes and centromeres of related fission yeasts. Centromere domain organization, but not sequence, is conserved between Schizosaccharomyces pombe, S. octosporus and S. cryophilus with a central CENP-ACnp1 domain flanked by heterochromatic outer-repeat regions. Conserved syntenic clusters of tRNA genes and 5S rRNA genes occur across the centromeres of S. octosporus and S. cryophilus, suggesting conserved function. Interestingly, nonhomologous centromere central-core sequences from S. octosporus and S. cryophilus are recognized in S. pombe, resulting in cross-species establishment of CENP-ACnp1 chromatin and functional kinetochores. Therefore, despite the lack of sequence conservation, Schizosaccharomyces centromere DNA possesses intrinsic conserved properties that promote assembly of CENP-A chromatin.

April 21, 2020  |  

Complete Assembly of the Genome of an Acidovorax citrulli Strain Reveals a Naturally Occurring Plasmid in This Species.

Acidovorax citrulli is the causal agent of bacterial fruit blotch (BFB), a serious threat to cucurbit crop production worldwide. Based on genetic and phenotypic properties, A. citrulli strains are divided into two major groups: group I strains have been generally isolated from melon and other non-watermelon cucurbits, while group II strains are closely associated with watermelon. In a previous study, we reported the genome of the group I model strain, M6. At that time, the M6 genome was sequenced by MiSeq Illumina technology, with reads assembled into 139 contigs. Here, we report the assembly of the M6 genome following sequencing with PacBio technology. This approach not only allowed full assembly of the M6 genome, but it also revealed the occurrence of a ~53 kb plasmid. The M6 plasmid, named pACM6, was further confirmed by plasmid extraction, Southern-blot analysis of restricted fragments and obtention of M6-derivative cured strains. pACM6 occurs at low copy numbers (average of ~4.1 ± 1.3 chromosome equivalents) in A. citrulli M6 and contains 63 open reading frames (ORFs), most of which (55.6%) encoding hypothetical proteins. The plasmid contains several genes encoding type IV secretion components, and typical plasmid-borne genes involved in plasmid maintenance, replication and transfer. The plasmid also carries an operon encoding homologs of a Fic-VbhA toxin-antitoxin (TA) module. Transcriptome data from A. citrulli M6 revealed that, under the tested conditions, the genes encoding the components of this TA system are among the highest expressed genes in pACM6. Whether this TA module plays a role in pACM6 maintenance is still to be determined. Leaf infiltration and seed transmission assays revealed that, under tested conditions, the loss of pACM6 did not affect the virulence of A. citrulli M6. We also show that pACM6 or similar plasmids are present in several group I strains, but absent in all tested group II strains of A. citrulli.

April 21, 2020  |  

Cichorium intybus L.?×?Cicerbita alpina Walbr.: doubled haploid chicory induction and CENH3 characterization

Intergeneric hybridization between industrial chicory (Cichorium intybus L.) and Cicerbita alpina Walbr. induces interspecific hybrids and haploid chicory plants after in vitro embryo rescue. The protocol yielded haploids in 5 out of 12 cultivars pollinated; altogether 18 haploids were regenerated from 2836 embryos, with a maximum efficiency of 1.96% haploids per cross. Obtained haploids were chromosome doubled with mitosis inhibitors trifluralin and oryzalin; exposure to 0.05 g L-1 oryzalin during one week was the most efficient treatment to regenerate doubled haploids. Inbreeding effects in vitro were limited, but the ploidy level affects morphology. Transcriptome sequencing revealed two unique copies of CENH3 in Cicerbita alpina Walbr. Comparison of CENH3.1 protein sequences of Cicerbita and Cichorium obtained through transcriptome and whole shotgun genome sequencing revealed two amino-acid substitutions at critical residues of the histone fold domain. These particular changes cause chromosome elimination and reduced centromere loading in several other species and might indicate a CENH3-dependent mechanism causing chromosome elimination of parental chromosomes during Cichorium?×?Cicerbita intergeneric hybridization. Our results provide insights in chromosome elimination and might increase the efficiency of haploid induction in Cichorium.

April 21, 2020  |  

Comparative Genomic Analyses Reveal Core-Genome-Wide Genes Under Positive Selection and Major Regulatory Hubs in Outlier Strains of Pseudomonas aeruginosa.

Genomic information for outlier strains of Pseudomonas aeruginosa is exiguous when compared with classical strains. We sequenced and constructed the complete genome of an environmental strain CR1 of P. aeruginosa and performed the comparative genomic analysis. It clustered with the outlier group, hence we scaled up the analyses to understand the differences in environmental and clinical outlier strains. We identified eight new regions of genomic plasticity and a plasmid pCR1 with a VirB/D4 complex followed by trimeric auto-transporter that can induce virulence phenotype in the genome of strain CR1. Virulence genotype analysis revealed that strain CR1 lacked hemolytic phospholipase C and D, three genes for LPS biosynthesis and had reduced antibiotic resistance genes when compared with clinical strains. Genes belonging to proteases, bacterial exporters and DNA stabilization were found to be under strong positive selection, thus facilitating pathogenicity and survival of the outliers. The outliers had the complete operon for the production of vibrioferrin, a siderophore present in plant growth promoting bacteria. The competence to acquire multidrug resistance and new virulence factors makes these strains a potential threat. However, we identified major regulatory hubs that can be used as drug targets against both the classical and outlier groups.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.