April 21, 2020  |  

Genome Sequences and Methylation Patterns of Natrinema versiforme BOL5-4 and Natrinema pallidum BOL6-1, Two Extremely Halophilic Archaea from a Bolivian Salt Mine.

Two extremely halophilic archaea, namely, Natrinema versiforme BOL5-4 and Natrinema pallidum BOL6-1, were isolated from a Bolivian salt mine and their genomes sequenced using single-molecule real-time sequencing. The GC-rich genomes of BOL5-4 and BOL6-1 were 4.6 and 3.8 Mbp, respectively, with large chromosomes and multiple megaplasmids. Genome annotation was incorporated into HaloWeb and methylation patterns incorporated into REBASE.Copyright © 2019 DasSarma et al.


April 21, 2020  |  

Methylomes of Two Extremely Halophilic Archaea Species, Haloarcula marismortui and Haloferax mediterranei.

The genomes of two extremely halophilic Archaea species, Haloarcula marismortui and Haloferax mediterranei, were sequenced using single-molecule real-time sequencing. The ~4-Mbp genomes are GC rich with multiple large plasmids and two 4-methyl-cytosine patterns. Methyl transferases were incorporated into the Restriction Enzymes Database (REBASE), and gene annotation was incorporated into the Haloarchaeal Genomes Database (HaloWeb).Copyright © 2019 DasSarma et al.


April 21, 2020  |  

Complete Genome Sequence of Halocella sp. Strain SP3-1, an Extremely Halophilic, Glycoside Hydrolase- and Bacteriocin-Producing Bacterium Isolated from a Salt Evaporation Pond.

Halocella sp. strain SP3-1, a cellulose-degrading bacterium, was isolated from a hypersaline evaporation pond in Thailand. Here, we report the first complete genome sequence of strain SP3-1. This species has a genome size of 4,035,760 bases, and the genome contains several genes encoding cellulose, hemicellulose, starch-degrading enzymes, and bacteriocins.


April 21, 2020  |  

Complete genome sequence of Salinigranum rubrum GX10T, an extremely halophilic archaeon isolated from a marine solar saltern

Since the first genome of a halophilic archaeon was sequenced in 2000, microbes inhabiting hypersaline environments have been investigated largely based on genomic characteristics. Salinigranum rubrum GX10T, the type species of the genus Salinigranum belonging to the euryarchaeal family Haloferacaceae, was isolated from the brine of Gangxi marine solar saltern near Weihai, China. Similar with most members of the class Halobacteria, S. rubrum GX10T is an extreme halophile requiring at least 1.5?M NaCl for growth and 3.1?M NaCl for optimum growth. We sequenced and annotated the complete genome of S. rubrum GX10T, which was found to be 4,973,118?bp and comprise one chromosome and five plasmids. A total of 4966 protein coding genes, 47 tRNA genes and 6 rRNA genes were obtained. The isoelectric point distribution for the predict proteins was observed with an acidic peak, which reflected the adaption of S. rubrum GX10T to the halophilic environment. Genes related to potassium uptake, sodium efflux as well as compatible-solute biosynthesis and transport were identified, which were responsible for the resistance to osmotic stress. Genes related to heavy metal resistance, CRISPR-Cas system and light transform system were also detected. This study reports the first genome in the genus Salinigranum and provides a basis for understanding resistance strategies to harsh environment at the genomic level.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.