June 1, 2021  |  

Sequencing and de novo assembly of the 17q21.31 disease associated region using long reads generated by Pacific Biosciences SMRT Sequencing technology.

Assessment of genome-wide variation revealed regions of the genome with complex, structurally diverse haplotypes that are insufficiently represented in the human reference genome. The 17q21.31 region is one of the most dynamic and complex regions of the human genome. Different haplotypes exist, in direct and inverted orientation, showing evidence of positive selection and predisposing to microdeletion associated with mental retardation. Sequencing of different haplotypes is extremely important to characterize the spectrum of structural variation at this locus. However, de novo assembly with second-generation sequencing reads is still problematic. Using PacBio technology we have sequenced and de novo assembled a tiling path of eight BAC clones (~1.6 Mb region) across this medically relevant region from the library of a hydatidiform mole. Complete hydatidiform moles arise from the fertilization of an enucleated egg from a single sperm and therefore carry a haploid complement of the human genome, eliminating allelic variation that may confound mapping and assembly. The PacBio RS system enables single molecule real time sequencing, featuring long reads and fast turnaround times. With deep sequencing, PacBio reads were able to generate a very uniform sequencing coverage with close to 100% coverage of most of the target interval regions covered. Due to long read lengths, the PacBio RS data could be accurately assembled.


June 1, 2021  |  

Genome sequencing of endosymbiotic bacterial Streptomyces sp. from Antartic lichen using Single Molecule Real-time Sequencing (SMRT) technology.

Along with the advent of next-generation sequencing (NGS) techniques, it has become possible to sequence a microbial genome very quickly with high coverage. Recently, PacificBioscience developed single molecule real-time sequencing (SMRT) technology, 3rd generation sequencing platform, which provide much longer (average read length: 1.5Kb) reads without PCR amplification. We did de novo sequencing of Streptomyces sp. using Illumina GAIIx, Roche 454 and PacBio RS system and compared the data. The endosymbiotic bacteria Streptomyces sp. PAMC 26508 was isolated from Antarctic lichen Psoroma sp. that grows attached rocks on Barton Peninsula, King George Island, Antarctica (62, 13’S, 58, 47’W). With 4 SMRT cells, we could get more than 15x coverage of corrected sequence data for de novo assembly. Comparing the performance of other sequencing platforms, PacBio platform could generate data on similar manner with general mid-level GC content organism. In conclusion, PacBio RS system, SMRT technology, shows better performance with high GC content organisms and is expected to be the new tool to improve the de novo sequencing and assembly.


June 1, 2021  |  

A comparison of 454 GS FLX Ti and PacBio RS in the context of characterizing HIV-1 intra-host diversity.

PacBio 2013 User Group Meeting Presentation Slides: Lance Hepler from UC San Diego’s Center for AIDS Research used the PacBio RS to study intra-host diversity in HIV-1. He compared PacBio’s performance to that of 454® sequencer, the platform he and his team previously used. Hepler noted that in general, there was strong agreement between the platforms; where results differed, he said that PacBio data had significantly better reproducibility and accuracy. “PacBio does not suffer from local coverage loss post-processing, whereas 454 has homopolymer problems,” he noted. Hepler said they are moving away from using 454 in favor of the PacBio system.


June 1, 2021  |  

Isoform sequencing: Unveiling the complex landscape in eukaryotic transcriptome on the PacBio RS II.

Advances in RNA sequencing have accelerated our understanding of the transcriptome, however isoform discovery remains challenging due to short read lengths. The Iso-Seq Application provides a new alternative to sequence full-length cDNA libraries using long reads from the PacBio RS II. Identification of long and often rare isoforms is demonstrated with rat heart and lung RNA prepared using the Clontech® SMARTer® cDNA preparation kit, followed by agarose-gel size selection in fractions of 1-2 kb, 2-3 kb and 3-6 kb. For each tissue, 1.8 and 1.2 million reads were obtained from 32 and 26 SMRT Cells, respectively. Filtering for reads with both adapters and polyA tail signals yielded >50% putative full-length transcripts. To improve consensus accuracy, we developed an isoform-level clustering algorithm ICE (Iterative Clustering for Error Correction), and polished full-length consensus sequences from ICE using Quiver. This method generated full-length transcripts up to 4.5 kb with = 99% post-correction accuracy. Compared with known rat genes, the Iso-Seq method not only recovered the majority of currently annotated isoforms, but also several unannotated novel isoforms with identified homologs in the RefSeq database. Additionally, alternative stop sites, extended UTRs, and retained introns were detected.


June 1, 2021  |  

Near perfect de novo assemblies of eukaryotic genomes using PacBio long read sequencing.

Third generation single molecule sequencing technology from Pacific Biosciences, Moleculo, Oxford Nanopore, and other companies are revolutionizing genomics by enabling the sequencing of long, individual molecules of DNA and RNA. One major advantage of these technologies over current short read sequencing is the ability to sequence much longer molecules, thousands or tens of thousands of nucleotides instead of mere hundreds. This capacity gives researchers substantially greater power to probe into microbial, plant, and animal genomes, but it remains unknown on how to best use these data. To answer this, we systematically evaluated the human genome and 25 other important genomes across the tree of life ranging in size from 1Mbp to 3Gbp in an attempt to answer how long the reads need to be and how much coverage is necessary to completely assemble their chromosomes with single molecule sequencing. We also present a novel error correction and assembly algorithm using a combination of PacBio and pre-assembled Illumina sequencing. This new algorithm greatly outperforms other published hybrid algorithms.


June 1, 2021  |  

A genome assembly of the domestic goat from 70x coverage of single molecule, real-time sequence.

Goat is an important source of milk, meat, and fiber, especially in developing countries. An advantage of goats as livestock is the low maintenance requirements and high adaptability compared to other milk producers. The global population of domestic goats exceeds 800 million. In Africa, goat production is characterized by low productivity levels, and attempts to introduce more productive breeds have met with poor success due in part to nutritional constraints. It has been suggested that incorporation of selective breeding within the herds adapted for survival could represent one approach to improving food security across Africa. A recently produced genome assembly of a Chinese Yunnan breed goat, based on 192 Gb of short reads across a range of insert sizes from 180 bp to 20 kb, reported a contig N50 of 18.7 kb. The scaffold N50 was improved from 2.2 Mb to 3.1 Mb by addition of fosmid end sequence, with an estimated 140 million Ns in gaps and 91% coverage. The assembly has proven somewhat problematic for pursuing genome-wide association analysis with SNP arrays, apparently due in part to errors in ordering of markers using the draft genome. In order to provide a higher quality assembly, we sequenced a highly inbred, San Clemente breed goat genome using 458 SMRT cells on the Pacific Biosciences platform. These cells generated 193.5 Gbases of sequence after processing into subreads, with mean 5110 bases and max subread length of 40.5 kb. This sequence data generated an assembly using the recently reported MHAP error correction approach and Celera Assembler v8.2. The contig N50 was 2.5 Mb, with the largest contig spanning 19.5 Mb. Additional characteristics of the assembly will be presented.


June 1, 2021  |  

Resources for advanced bioinformaticians working in plant and animal genomes with SMRT Sequencing.

Significant advances in bioinformatics tool development have been made to more efficiently leverage and deliver high-quality genome assemblies with PacBio long-read data. Current data throughput of SMRT Sequencing delivers average read lengths ranging from 10-15 kb with the longest reads exceeding 40 kb. This has resulted in consistent demonstration of a minimum 10-fold improvement in genome assemblies with contig N50 in the megabase range compared to assemblies generated using only short- read technologies. This poster highlights recent advances and resources available for advanced bioinformaticians and developers interested in the current state-of-the-art large genome solutions available as open-source code from PacBio and third-party solutions, including HGAP, MHAP, and ECTools. Resources and tools available on GitHub are reviewed, as well as datasets representing major model research organisms made publically available for community evaluation or interested developers.


June 1, 2021  |  

The resurgence of reference quality genome sequence.

Since the advent of Next-Generation Sequencing (NGS), the cost of de novo genome sequencing and assembly have dropped precipitately, which has spurred interest in genome sequencing overall. Unfortunately the contiguity of the NGS assembled sequences, as well as the accuracy of these assemblies have suffered. Additionally, most NGS de novo assemblies leave large portions of genomes unresolved, and repetitive regions are often collapsed. When compared to the reference quality genome sequences produced before the NGS era, the new sequences are highly fragmented and often prove to be difficult to properly annotate. In some cases the contiguous portions are smaller than the average gene size making the sequence not nearly as useful for biologists as the earlier reference quality genomes including of Human, Mouse, C. elegans, or Drosophila. Recently, new 3rd generation sequencing technologies, long-range molecular techniques, and new informatics tools have facilitated a return to high quality assembly. We will discuss the capabilities of the technologies and assess their impact on assembly projects across the tree of life from small microbial and fungal genomes through large plant and animal genomes. Beyond improvements to contiguity, we will focus on the additional biological insights that can be made with better assemblies, including more complete analysis genes in their flanking regulatory context, in-depth studies of transposable elements and other complex gene families, and long-range synteny analysis of entire chromosomes. We will also discuss the need for new algorithms for representing and analyzing collections of many complete genomes at once.


June 1, 2021  |  

Toward comprehensive genomics analysis with de novo assembly.

Whole genome sequencing can provide comprehensive information important for determining the biochemical and genetic nature of all elements inside a genome. The high-quality genome references produced from past genome projects and advances in short-read sequencing technologies have enabled quick and cheap analysis for simple variants. However even with the focus on genome-wide resequencing for SNPs, the heritability of more than 50% of human diseases remains elusive. For non-human organisms, high-contiguity references are deficient, limiting the analysis of genomic features. The long and unbiased reads from single molecule, real-time (SMRT) Sequencing and new de novo assembly approaches have demonstrated the ability to detect more complicated variants and chromosome-level phasing. Moreover, with the recent advance of bioinformatics algorithms and tools, the computation tasks for completing high-quality de novo assembly of large genomes becomes feasible with commodity hardware. Ongoing development in sequencing technologies and bioinformatics will likely lead to routine generation of high-quality reference assemblies in the future. We discuss the current state of art and the challenges in bioinformatics toward such a goal. More specifically, explicit examples of pragmatic computational requirements for assembling mammalian-size genomes and algorithms suitable for processing diploid genomes are discussed.


June 1, 2021  |  

Assembly of complete KIR haplotypes from a diploid individual by the direct sequencing of full-length fosmids.

We show that linearizing and directly sequencing full-length fosmids simplifies the assembly problem such that it is possible to unambiguously assemble individual haplotypes for the highly repetitive 100-200 kb killer Ig-like receptor (KIR) gene loci of chromosome 19. A tiling of targeted fosmids can be used to clone extended lengths of genomic DNA, 100s of kb in length, but repeat complexity in regions of particular interest, such as the KIR locus, means that sequence assembly of pooled samples into complete haplotypes is difficult and in many cases impossible. The current maximum read length generated by SMRT Sequencing exceeds the length of a 40 kb fosmid; it is therefore possible to span an entire fosmid in one sequencing read. Shearing, sequencing and assembling fosmids in a shotgun approach is prone to errors when the underlying sequence is highly repetitive. We show that it is possible to directly sequence linearized fosmids and generate a high-quality consensus by simple alignment, removing the need for an error-prone assembly step. The high-quality sequence of complete fosmids can then be tiled into full haplotypes. We demonstrate the method on DNA samples from a number of individuals and fully recover the sequence of both haplotypes from a pool of KIR fosmids. The ability to haplotype and sequence complex immunogenetic regions will bring exciting opportunities to explore the evolution of disease associations of the immune sub-genome. This simple and robust approach can be scaled-up allowing a complex genomic region to be sequenced at a population level. We expect such sequencing to be valuable in disease association research.


June 1, 2021  |  

Highly contiguous de novo human genome assembly and long-range haplotype phasing using SMRT Sequencing

The long reads, random error, and unbiased sampling of SMRT Sequencing enables high quality, de novo assembly of the human genome. PacBio long reads are capable of resolving genomic variations at all size scales, including SNPs, insertions, deletions, inversions, translocations, and repeat expansions, all of which are important in understanding the genetic basis for human disease and difficult to access via other technologies. In demonstration of this, we report a new high-quality, diploid aware de novo assembly of Craig Venter’s well-studied genome.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.