Single-Molecule Real-Time (SMRT) DNA sequencing is unique in that nucleotide incorporation events are monitored in real time, leading to a wealth of kinetic information in addition to the extraction of the primary DNA sequence. The dynamics of the DNA polymerase that is observed adds an additional dimension of sequence-dependent information, and can be used to learn more about the molecule under study. First, the primary sequence itself can be determined more accurately. The kinetic data can be used to corroborate or overturn consensus calls and even enable calling bases in problematic sequence contexts. Second, using the kinetic information, we can…
Understanding the genetic basis of infectious diseases is critical to enacting effective treatments, and several large-scale sequencing initiatives are underway to collect this information. Sequencing bacterial samples is typically performed by mapping sequence reads against genomes of known reference strains. While such resequencing informs on the spectrum of single-nucleotide differences relative to the chosen reference, it can miss numerous other forms of variation known to influence pathogenicity: structural variations (duplications, inversions), acquisition of mobile elements (phages, plasmids), homonucleotide length variation causing phase variation, and epigenetic marks (methylation, phosphorothioation) that influence gene expression to switch bacteria from non- pathogenic to pathogenic…
Understanding the genetic basis of infectious diseases is critical to enacting effective treatments, and several large-scale sequencing initiatives are underway to collect this information. Sequencing bacterial samples is typically performed by mapping sequence reads against genomes of known reference strains. While such resequencing informs on the spectrum of single nucleotide differences relative to the chosen reference, it can miss numerous other forms of variation known to influence pathogenicity: structural variations (duplications, inversions), acquisition of mobile elements (phages, plasmids), homonucleotide length variation causing phase variation, and epigenetic marks (methylation, phosphorothioation) that influence gene expression to switch bacteria from non-pathogenic to pathogenic…
PacBio SMRT Sequencing has the unique ability to directly detect base modifications in addition to the nucleotide sequence of DNA. Because eukaryotes use base modifications to regulate gene expression, the absence or presence of epigenetic events relative to the location of genes is critical to elucidate the function of the modification. Therefore an integrated approach that combines multiple omic-scale assays is necessary to study complex organisms. Here, we present an integrated analysis of three sequencing experiments: 1) DNA sequencing, 2) base-modification detection, and 3) Iso-seq analysis, in Neurospora crassa, a filamentous fungus that has been used to make many landmark…
The assembly of metagenomes is dramatically improved by the long read lengths of SMRT Sequencing. This is demonstrated in an experimental design to sequence a mock community from the Human Microbiome Project, and assemble the data using the hierarchical genome assembly process (HGAP) at Pacific Biosciences. Results of this analysis are promising, and display much improved contiguity in the assembly of the mock community as compared to publicly available short-read data sets and assemblies. Additionally, the use of base modification information to make further associations between contigs provides additional data to improve assemblies, and to distinguish between members within a…
Single Molecule, Real-Time (SMRT) Sequencing holds promise for addressing new frontiers to understand molecular mechanisms in evolution and gain insight into adaptive strategies. With read lengths exceeding 10 kb, we are able to sequence high-quality, closed microbial genomes with associated plasmids, and investigate large genome complexities, such as long, highly repetitive, low-complexity regions and multiple tandem-duplication events. Improved genome quality, observed at 99.9999% (QV60) consensus accuracy, and significant reduction of gap regions in reference genomes (up to and beyond 50%) allow researchers to better understand coding sequences with high confidence, investigate potential regulatory mechanisms in noncoding regions, and make inferences…
The comprehensive characterization of cancer genomes and epigenomes for understanding drug resistance remains an important challenge in the field of oncology. For example, PC-9, a non-small cell lung cancer (NSCL) cell line, contains a deletion mutation in exon 19 (DelE746A750) of EGRF that renders it sensitive to erlotinib, an EGFR inhibitor. However, sustained treatment of these cells with erlotinib leads to drug-tolerant cell populations that grow in the presence of erlotinib. However, the resistant cells can be resensitized to erlotinib upon treatment with methyltransferase inhibitors, suggesting a role of epigenetic modification in development of drug resistance. We have characterized for…
In addition to the genome and transcriptome, epigenetic information is essential to understand biological processes and their regulation, and their misregulation underlying disease. Traditionally, epigenetic DNA modifications are detected using upfront sample preparation steps such as bisulfite conversion, followed by sequencing. Bisulfite sequencing has provided a wealth of knowledge about human epigenetics, however it does not access the entire genome due to limitations in read length and GC- bias of the sequencing technologies used. In contrast, Single Molecule, Real-Time (SMRT) DNA Sequencing is unique in that it can detect DNA base modifications as part of the sequencing process. It can…
The assembly, annotation, and characterization of the sugar pine (Pinus lambertiana Dougl.) transcriptome represents an opportunity to study the genetic mechanisms underlying resistance to the invasive white pine blister rust (Cronartium ribicola) as well as responses to other abiotic stresses. The assembled transcripts also provide a resource to improve the genome assembly. We selected a diverse set of tissues allowing the first comprehensive evaluation of the sugar pine gene space. We have combined short read sequencing technologies (Illumina MiSeq and HiSeq) with the relatively new Pacific Biosciences Iso-Seq approach. From the 2.5 billion and 1.6 million Illumina and PacBio (46…
Microbial genome sequencing can be done quickly, easily, and efficiently with the PacBio sequencing instruments, resulting in complete de novo assemblies. Alternative protocols have been developed to reduce the amount of purified DNA required for SMRT Sequencing, to broaden applicability to lower-abundance samples. If 50-100 ng of microbial DNA is available, a 10-20 kb SMRTbell library can be made. The resulting library can be loaded onto multiple SMRT Cells, yielding more than enough data for complete assembly of microbial genomes using the SMRT Portal assembly program HGAP, plus base modification analysis. The entire process can be done in less than…
The increased throughput of the RS II and Sequel Systems enables multiple microbes to be sequenced on a single SMRT Cell. This multiplexing can be readily achieved by simply incorporating a unique barcode for each microbe into the SMRTbell adapters after shearing genomic DNA using a streamlined library construction process. Incorporating a barcode without the requirement for PCR amplification prevents the loss of epigenetic information (e.g., methylation signatures), and the generation of chimeric sequences, while the modified protocol eliminates the need to build several individual SMRTbell libraries. We multiplexed up to 8 unique strains of H. pylori. Each strain was…
For many of the repeat expansion disorders, the disease gene has been discovered, however the underlying biological mechanisms have not yet been fully understood. This is mainly due to technological limitations that do not allow for the needed base-pair resolution of the long, repetitive genomic regions. We have developed a novel, amplification-free enrichment technique that uses the CRISPR/Cas9 system to target large repeat expansions. This method, in conjunction with PacBio’s long reads and uniform coverage, enables sequencing of these complex genomic regions. By using a PCR-free amplification method, we are able to access not only the repetitive elements and interruption…
We have developed several candidate gene screening applications for both Neuromuscular and Neurological disorders. The power behind these applications comes from the use of long-read sequencing. It allows us to access previously unresolvable and even unsequencable genomic regions. SMRT Sequencing offers uniform coverage, a lack of sequence context bias, and very high accuracy. In addition, it is also possible to directly detect epigenetic signatures and characterize full-length gene transcripts through assembly-free isoform sequencing. In addition to calling the bases, SMRT Sequencing uses the kinetic information from each nucleotide to distinguish between modified and native bases.
As the throughput of the PacBio Systems continues to increase, so has the desire to fully utilize SMRT Cell sequencing capacity to multiplex microbes for whole genome sequencing. Multiplexing is readily achieved by incorporating a unique barcode for each microbe into the SMRTbell adapters and using a streamlined library preparation process. Incorporating barcodes without PCR amplification prevents the loss of epigenetic information and the generation of chimeric sequences, while eliminating the need to generate separate SMRTbell libraries. We multiplexed the genomes of up to 8 unique strains of H. pylori. Each genome was sheared and processed through adapter ligation in…
Target enrichment capture methods allow scientists to rapidly interrogate important genomic regions of interest for variant discovery, including SNPs, gene isoforms, and structural variation. Custom targeted sequencing panels are important for characterizing heterogeneous, complex diseases and uncovering the genetic basis of inherited traits with more uniform coverage when compared to PCR-based strategies. With the increasing availability of high-quality reference genomes, customized gene panels are readily designed with high specificity to capture genomic regions of interest, thus enabling scientists to expand their research scope from a single individual to larger cohort studies or population-wide investigations. Coupled with PacBio® long-read sequencing, these…