Menu
September 22, 2019  |  

Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis.

Dodders (Cuscuta spp., Convolvulaceae) are root- and leafless parasitic plants. The physiology, ecology, and evolution of these obligate parasites are poorly understood. A high-quality reference genome of Cuscuta australis was assembled. Our analyses reveal that Cuscuta experienced accelerated molecular evolution, and Cuscuta and the convolvulaceous morning glory (Ipomoea) shared a common whole-genome triplication event before their divergence. C. australis genome harbors 19,671 protein-coding genes, and importantly, 11.7% of the conserved orthologs in autotrophic plants are lost in C. australis. Many of these gene loss events likely result from its parasitic lifestyle and the massive changes of its body plan. Moreover, comparison of the gene expression patterns in Cuscuta prehaustoria/haustoria and various tissues of closely related autotrophic plants suggests that Cuscuta haustorium formation requires mostly genes normally involved in root development. The C. australis genome provides important resources for studying the evolution of parasitism, regressive evolution, and evo-devo in plant parasites.


September 22, 2019  |  

The complete mitochondrial genome of the early flowering plant Nymphaea colorata is highly repetitive with low recombination.

Mitochondrial genomes of flowering plants (angiosperms) are highly dynamic in genome structure. The mitogenome of the earliest angiosperm Amborella is remarkable in carrying rampant foreign DNAs, in contrast to Liriodendron, the other only known early angiosperm mitogenome that is described as ‘fossilized’. The distinctive features observed in the two early flowering plant mitogenomes add to the current confusions of what early flowering plants look like. Expanded sampling would provide more details in understanding the mitogenomic evolution of early angiosperms. Here we report the complete mitochondrial genome of water lily Nymphaea colorata from Nymphaeales, one of the three orders of the earliest angiosperms.Assembly of data from Pac-Bio long-read sequencing yielded a circular mitochondria chromosome of 617,195 bp with an average depth of 601×. The genome encoded 41 protein coding genes, 20 tRNA and three rRNA genes with 25 group II introns disrupting 10 protein coding genes. Nearly half of the genome is composed of repeated sequences, which contributed substantially to the intron size expansion, making the gross intron length of the Nymphaea mitochondrial genome one of the longest among angiosperms, including an 11.4-Kb intron in cox2, which is the longest organellar intron reported to date in plants. Nevertheless, repeat mediated homologous recombination is unexpectedly low in Nymphaea evidenced by 74 recombined reads detected from ten recombinationally active repeat pairs among 886,982 repeat pairs examined. Extensive gene order changes were detected in the three early angiosperm mitogenomes, i.e. 38 or 44 events of inversions and translocations are needed to reconcile the mitogenome of Nymphaea with Amborella or Liriodendron, respectively. In contrast to Amborella with six genome equivalents of foreign mitochondrial DNA, not a single horizontal gene transfer event was observed in the Nymphaea mitogenome.The Nymphaea mitogenome resembles the other available early angiosperm mitogenomes by a similarly rich 64-coding gene set, and many conserved gene clusters, whereas stands out by its highly repetitive nature and resultant remarkable intron expansions. The low recombination level in Nymphaea provides evidence for the predominant master conformation in vivo with a highly substoichiometric set of rearranged molecules.


September 22, 2019  |  

Co-location of the blaKPC-2, blaCTX-M-65, rmtB and virulence relevant factors in an IncFII plasmid from a hypermucoviscous Klebsiella pneumoniae isolate.

Hypervirulent variants of klebsiella pneumoniae (hvKP), which cause serious infections not only healthy individuals, but also the immunocompromised patients, have been increasingly reported recently. One conjugation of a hypermucoviscous strian SWU01 co-carried the resistance gene blaKPC-2 and virulence gene iroN by the PCR detection from three carbapenem-resistance hvKP. To know the genetic context of this plasmid. The whole genome of this strain was sequenced. We got a 162,552-bp plasmid (pSWU01) which co-carried the resistance gene blaKPC-2 and virulence gene iroN. It is composed of a typical IncFII-type backbone, five resistance genes including blaCTX-M-65, blaKPC-2, blaSHV-12, blaTEM-1 and rmtB, and several virulence relevant factors including iroN, traT and toxin-antitoxin systems. The plasmid pSWU01 co-carrying the multidrug resistance determinants and virulence relevant factors from the hypermucoviscous K. pneumoniae represents a novel therapeutic challenge. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Assembly and comparative analysis of the complete mitochondrial genome sequence of Sophora japonica ‘JinhuaiJ2’.

Sophora japonica L. (Faboideae, Leguminosae) is an important traditional Chinese herb with a long history of cultivation. Its flower buds and fruits contain abundant flavonoids, and therefore, the plants are cultivated for the industrial extraction of rutin. Here, we determined the complete nucleotide sequence of the mitochondrial genome of S. japonica ‘JinhuaiJ2’, the most widely planted variety in Guangxi region of China. The total length of the mtDNA sequence is 484,916 bp, with a GC content of 45.4%. Sophora japonica mtDNA harbors 32 known protein-coding genes, 17 tRNA genes, and three rRNA genes with 17 cis-spliced and five trans-spliced introns disrupting eight protein-coding genes. The gene coding and intron regions, and intergenic spacers account for 7.5%, 5.8% and 86.7% of the genome, respectively. The gene profile of S. japonica mitogenome differs from that of the other Faboideae species by only one or two gene gains or losses. Four of the 17 cis-spliced introns showed distinct length variations in the Faboideae, which could be attributed to the homologous recombination of the short repeats measuring a few bases located precisely at the edges of the putative deletions. This reflects the importance of small repeats in the sequence evolution in Faboideae mitogenomes. Repeated sequences of S. japonica mitogenome are mainly composed of small repeats, with only 20 medium-sized repeats, and one large repeat, adding up to 4% of its mitogenome length. Among the 25 pseudogene fragments detected in the intergenic spacer regions, the two largest ones and their corresponding functional gene copies located in two different sets of medium-sized repeats, point to their origins from homologous recombinations. As we further observed the recombined reads associated with the longest repeats of 2,160 bp with the PacBio long read data set of just 15 × in depth, repeat mediated homologous recombinations may play important role in the mitogenomic evolution of S. japonica. Our study provides insightful knowledge to the genetic background of this important herb species and the mitogenomic evolution in the Faboideae species.


September 22, 2019  |  

Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils.

Disease-suppressive soils are ecosystems in which plants suffer less from root infections due to the activities of specific microbial consortia. The characteristics of soils suppressive to specific fungal root pathogens are comparable to those of adaptive immunity in animals, as reported by Raaijmakers and Mazzola (Science 352:1392-3, 2016), but the mechanisms and microbial species involved in the soil suppressiveness are largely unknown. Previous taxonomic and metatranscriptome analyses of a soil suppressive to the fungal root pathogen Rhizoctonia solani revealed that members of the Burkholderiaceae family were more abundant and more active in suppressive than in non-suppressive soils. Here, isolation, phylogeny, and soil bioassays revealed a significant disease-suppressive activity for representative isolates of Burkholderia pyrrocinia, Paraburkholderia caledonica, P. graminis, P. hospita, and P. terricola. In vitro antifungal activity was only observed for P. graminis. Comparative genomics and metabolite profiling further showed that the antifungal activity of P. graminis PHS1 was associated with the production of sulfurous volatile compounds encoded by genes not found in the other four genera. Site-directed mutagenesis of two of these genes, encoding a dimethyl sulfoxide reductase and a cysteine desulfurase, resulted in a loss of antifungal activity both in vitro and in situ. These results indicate that specific members of the Burkholderiaceae family contribute to soil suppressiveness via the production of sulfurous volatile compounds.


September 22, 2019  |  

Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum.

Gut microbiota of breast-fed infants are generally rich in bifidobacteria. Recent studies show that infant gut-associated bifidobacteria can assimilate human milk oligosaccharides (HMOs) specifically among the gut microbes. Nonetheless, little is known about how bifidobacterial-rich communities are shaped in the gut. Interestingly, HMOs assimilation ability is not related to the dominance of each species. Bifidobacterium longum susbp. longum and Bifidobacterium breve are commonly found as the dominant species in infant stools; however, they show limited HMOs assimilation ability in vitro. In contrast, avid in vitro HMOs consumers, Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis, are less abundant in infant stools. In this study, we observed altruistic behaviour by B. bifidum when incubated in HMOs-containing faecal cultures. Four B. bifidum strains, all of which contained complete sets of HMO-degrading genes, commonly left HMOs degradants unconsumed during in vitro growth. These strains stimulated the growth of other Bifidobacterium species when added to faecal cultures supplemented with HMOs, thereby increasing the prevalence of bifidobacteria in faecal communities. Enhanced HMOs consumption by B. bifidum-supplemented cultures was also observed. We also determined the complete genome sequences of B. bifidum strains JCM7004 and TMC3115. Our results suggest B. bifidum-mediated cross-feeding of HMOs degradants within bifidobacterial communities.


September 22, 2019  |  

Genomic characterization and probiotic potency of Bacillus sp. DU-106, a highly effective producer of L-lactic acid isolated from fermented yogurt.

Bacillus sp. DU-106, a newly isolated member of Bacillus cereus group, exhibits the predominant ability to produce L-lactic acid. The probiotic potency of test strain revealed its survivability at acidic pH, bile salts and viability in simulated gastric juice in vitro. The acute oral toxicity test indicated its no toxicity to laboratory mice in vivo. We further determined the complete genome of strain DU-106 to understand genetic basis as a potential probiotic. It has a circular chromosome and three plasmids for a total genome 5,758,208 bp in size with a G + C content of 35.10%. Genes associated with lactate synthesis were found in the DU-106 genome. We also annotated various stress-related, bile salt resistance, and adhesion-related domains in this strain, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival under gastrointestinal tract. Moreover, strain DU-106 genome lacks the virulence genes encodes cereulide synthetase, enterotoxin FM, and cytotoxin K. These phenotypic and genomic probiotic potencies facilitate its potential candidate as probiotic starter in food industry.


September 22, 2019  |  

Characterisation of a class 1 integron associated with the formation of quadruple blaGES-5 cassettes from an IncP-1ß group plasmid in Pseudomonas aeruginosa.

Integrons are genetic platforms responsible for the dissemination of antimicrobial resistance genes among Gram-negative bacteria, primarily due to their association with transposable elements and conjugative plasmids. In this study, a cassette array containing four identical blaGES-5 genes embedded in a class 1 integron located on an IncP-1ß group plasmid from a clinical Pseudomonas aeruginosa strain was identified. Comparative genome analysis and conjugation assay showed that the plasmid pICP-4GES lacked the trbN, trbO and trbP genes but was conjugable. Antimicrobial susceptibility testing revealed that compared with single-copy blaGES-5 complementary strains, both the cloned and chromosome-targeted expression of four copies of blaGES-5 increased the minimum inhibitory concentration (MIC) by one to two dilutions for most of the selected antimicrobials. Quantitative real-time reverse transcription PCR (RT-qPCR) showed that the four consecutive cassettes increased blaGES-5 expression by approximately two-fold compared with the single-copy blaGES-5 strain, suggesting that the level of gene expression was not directly proportional to copy number. In addition, the gene cassette capture assay showed that the global blaGES-5 transfer frequency reached 5.38?×?10-4. Copyright © 2018. Published by Elsevier B.V.


September 22, 2019  |  

Complete genomic analysis of a kingdom crossing Klebsiella variicola isolate.

Bacterial isolate X39 was isolated from a community-acquired pneumonia patient in Beijing, China. A phylogenetic tree based on rpoB genes and average nucleotide identity data confirmed that isolate X39 belonged to Klebsiella variicola. The genome of K. variicola X39 contained one circular chromosome and nine plasmids. Comparative genomic analyses with other K. variicola isolates revealed that K. variicola X39 contained the most unique genes. Of these unique genes, many were prophages and transposases. Many virulence factors were shared between K. variicola X39 and Klebsiella pneumoniae F1. The pathogenicity of K. variicola X39 was compared with that of K. pneumoniae F1 in an abdominal infection model. The results indicated that K. variicola X39 was less virulent than typical clinical K. pneumoniae F1. The genome of K. variicola X39 also contained some genes involved in plant colonization, nitrogen fixation, and defense against oxidative stress. GFP-labeled K. variicola X39 could colonize maize as an endophytic bacterium. We concluded that K. variicola X39 was a kingdom-crossing strain.


September 22, 2019  |  

Therapeutic potential of a new jumbo phage that infects Vibrio coralliilyticus, a widespread coral pathogen.

Biological control using bacteriophages is a promising approach for mitigating the devastating effects of coral diseases. Several phages that infect Vibrio coralliilyticus, a widespread coral pathogen, have been isolated, suggesting that this bacterium is permissive to viral infection and is, therefore, a suitable candidate for treatment by phage therapy. In this study, we combined functional and genomic approaches to evaluate the therapeutic potential of BONAISHI, a novel V. coralliilyticus phage, which was isolated from the coral reef in Van Phong Bay (Vietnam). BONAISHI appears to be strictly lytic for several pathogenic strains of V. coralliilyticus and remains infectious over a broad range of environmental conditions. This candidate has an unusually large dsDNA genome (303 kb), with no genes that encode known toxins or implicated in lysogeny control. We identified several proteins involved in host lysis, which may offer an interesting alternative to the use of whole bacteriophages for controlling V. coralliilyticus. A preliminary therapy test showed that adding BONAISHI to an infected culture of Symbiodinium sp. cells reduced the impact of V. coralliilyticus on Symbiodinium sp. photosynthetic activity. This study showed that BONAISHI is able to mitigate V. coralliilyticus infections, making it a good candidate for phage therapy for coral disease.


September 22, 2019  |  

Genomic characterization reveals significant divergence within Chlorella sorokiniana (Chlorellales, Trebouxiophyceae)

Selection of highly productive algal strains is crucial for establishing economically viable biomass and biopro- duct cultivation systems. Characterization of algal genomes, including understanding strain-specific differences in genome content and architecture is a critical step in this process. Using genomic analyses, we demonstrate significant differences between three strains of Chlorella sorokiniana (strain 1228, UTEX 1230, and DOE1412). We found that unique, strain-specific genes comprise a substantial proportion of each genome, and genomic regions with> 80% local nucleotide identity constitute <15% of each genome among the strains, indicating substantial strain specific evolution. Furthermore, cataloging of meiosis and other sex-related genes in C. sor- okiniana strains suggests strategic breeding could be utilized to improve biomass and bioproduct yields if a sexual cycle can be characterized. Finally, preliminary investigation of epigenetic machinery suggests the pre- sence of potentially unique transcriptional regulation in each strain. Our data demonstrate that these three C. sorokiniana strains represent significantly different genomic content. Based on these findings, we propose in- dividualized assessment of each strain for potential performance in cultivation systems.


September 22, 2019  |  

Spread of the florfenicol resistance floR gene among clinical Klebsiella pneumoniae isolates in China.

Florfenicol is a derivative of chloramphenicol that is used only for the treatment of animal diseases. A key resistance gene for florfenicol, floR, can spread among bacteria of the same and different species or genera through horizontal gene transfer. To analyze the potential transmission of resistance genes between animal and human pathogens, we investigated floR in Klebsiella pneumoniae isolates from patient samples. floR in human pathogens may originate from animal pathogens and would reflect the risk to human health of using antimicrobial agents in animals.PCR was used to identify floR-positive strains. The floR genes were cloned, and the minimum inhibitory concentrations (MICs) were determined to assess the relative resistance levels of the genes and strains. Sequencing and comparative genomics methods were used to analyze floR gene-related sequence structure as well as the molecular mechanism of resistance dissemination.Of the strains evaluated, 20.42% (67/328) were resistant to florfenicol, and 86.96% (20/23) of the floR-positive strains demonstrated high resistance to florfenicol with MICs =512 µg/mL. Conjugation experiments showed that transferrable plasmids carried the floR gene in three isolates. Sequencing analysis of a plasmid approximately 125 kb in size (pKP18-125) indicated that the floR gene was flanked by multiple copies of mobile genetic elements. Comparative genomics analysis of a 9-kb transposon-like fragment of pKP18-125 showed that an approximately 2-kb sequence encoding lysR-floR-virD2 was conserved in the majority (79.01%, 83/105) of floR sequences collected from NCBI nucleotide database. Interestingly, the most similar sequence was a 7-kb fragment of plasmid pEC012 from an Escherichia coli strain isolated from a chicken.Identified on a transferable plasmid in the human pathogen K. pneumoniae, the floR gene may be disseminated through horizontal gene transfer from animal pathogens. Studies on the molecular mechanism of resistance gene dissemination in different bacterial species of animal origin could provide useful information for preventing or controlling the spread of resistance between animal and human pathogens.


September 22, 2019  |  

Impacts of horizontal gene transfer on the compact genome of the clavulanic acid-producing Streptomyces strain F613-1.

Mobile genetic elements involved in mediating horizontal transfer events contribute to bacterial evolution, and bacterial genomic plasticity and instability result in variation in functional genetic information in Streptomyces secondary metabolism. In a previous study, we reported the complete genome sequence of the industrial Streptomyces strain F613-1, which produces high yields of clavulanic acid. In this study, we used comparative genomics and bioinformatics to investigate the unique genomic features of this strain. Taken together, comparative genomics were used to systematically investigate secondary metabolism capabilities and indicated that frequent exchange of genetic materials between Streptomyces replicons may shape the remarkable diversities in their secondary metabolite repertoires. Moreover, a 136.9-kb giant region of plasticity (RGP) was found in the F613-1 chromosome, and the chromosome and plasmid pSCL4 are densely packed with an exceptionally large variety of potential secondary metabolic gene clusters, involving several determinants putatively accounting for antibiotic production. In addition, the differences in the architecture and size of plasmid pSCL4 between F613-1 and ATCC 27064 suggest that the pSCL4 plasmid could evolve from pSCL4-like and pSCL2-like extrachromosomal replicons. Furthermore, the genomic analyses revealed that strain F613-1 has developed specific genomic architectures and genetic patterns that are well suited to meet the requirements of industrial innovation processes.


September 22, 2019  |  

Density-dependent enhanced replication of a densovirus in Wolbachia-infected Aedes cells is associated with production of piRNAs and higher virus-derived siRNAs.

The endosymbiotic bacterium Wolbachia pipientis has been shown to restrict a range of RNA viruses in Drosophila melanogaster and transinfected dengue mosquito, Aedes aegypti. Here, we show that Wolbachia infection enhances replication of Aedes albopictus densovirus (AalDNV-1), a single stranded DNA virus, in Aedes cell lines in a density-dependent manner. Analysis of previously produced small RNAs of Aag2 cells showed that Wolbachia-infected cells produced greater absolute abundance of virus-derived short interfering RNAs compared to uninfected cells. Additionally, we found production of virus-derived PIWI-like RNAs (vpiRNA) produced in response to AalDNV-1 infection. Nuclear fractions of Aag2 cells produced a primary vpiRNA signature U1 bias whereas the typical “ping-pong” signature (U1 – A10) was evident in vpiRNAs from the cytoplasmic fractions. This is the first report of the density-dependent enhancement of DNA viruses by Wolbachia. Further, we report the generation of vpiRNAs in a DNA virus-host interaction for the first time. Copyright © 2018 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host.

Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF), Macrosteles quadrilineatus (Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial genomes: Nasuia (112 kb) and Sulcia (190 kb). Symbionts are segregated into distinct host cell types (bacteriocytes) and vary widely in their basic cellular capabilities. ALF differentially expresses thousands of genes between the bacteriocyte types to meet the functional needs of each symbiont, including the provisioning of metabolites and support of cellular processes. For example, the host highly expresses genes in the bacteriocytes that likely complement gene losses in nucleic acid synthesis, DNA repair mechanisms, transcription, and translation. Such genes are required to function in the bacterial cytosol. Many host genes comprising these support mechanisms are derived from the evolution of novel functional traits via horizontally transferred genes, reassigned mitochondrial support genes, and gene duplications with bacteriocyte-specific expression. Comparison across other hemipteran lineages reveals that hosts generally support the incomplete symbiont cellular processes, but the origins of these support mechanisms are generally specific to the host-symbiont system.Copyright © 2018 the Author(s). Published by PNAS.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.