Menu
April 21, 2020  |  

Patterns of non-ARD variation in more than 300 full-length HLA-DPB1 alleles.

Our understanding of sequence variation in the HLA-DPB1 gene is largely restricted to the hypervariable antigen recognition domain (ARD) encoded by exon 2. Here, we employed a redundant sequencing strategy combining long-read and short-read data to accurately phase and characterise in full length the majority of common and well-documented (CWD) DPB1 alleles as well as alleles with an observed frequency of at least 0.0006% in our predominantly European sample set. We generated 664 DPB1 sequences, comprising 279 distinct allelic variants. This allows us to present the, to date, most comprehensive analysis of the nature and extent of DPB1 sequence variation. The full-length sequence analysis revealed the existence of two highly diverged allele clades. These clades correlate with the rs9277534 A???G variant, a known expression marker located in the 3′-UTR. The two clades are fully differentiated by 174 fixed polymorphisms throughout a 3.6?kb stretch at the 3′-end of DPB1. The region upstream of this differentiation zone is characterised by increasingly shared variation between the clades. The low-expression A clade comprises 59% of the distinct allelic sequences including the three by far most frequent DPB1 alleles, DPB1*04:01, DPB1*02:01 and DPB1*04:02. Alleles in the A clade show reduced nucleotide diversity with an excess of rare variants when compared to the high-expression G clade. This pattern is consistent with a scenario of recent proliferation of A-clade alleles. The full-length characterisation of all but the most rare DPB1 alleles will benefit the application of NGS for DPB1 genotyping and provides a helpful framework for a deeper understanding of high- and low-expression alleles and their implications in the context of unrelated haematopoietic stem-cell transplantation.Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

A systematic review of the Trypanosoma cruzi genetic heterogeneity, host immune response and genetic factors as plausible drivers of chronic chagasic cardiomyopathy.

Chagas disease is a complex tropical pathology caused by the kinetoplastid Trypanosoma cruzi. This parasite displays massive genetic diversity and has been classified by international consensus in at least six Discrete Typing Units (DTUs) that are broadly distributed in the American continent. The main clinical manifestation of the disease is the chronic chagasic cardiomyopathy (CCC) that is lethal in the infected individuals. However, one intriguing feature is that only 30-40% of the infected individuals will develop CCC. Some authors have suggested that the immune response, host genetic factors, virulence factors and even the massive genetic heterogeneity of T. cruzi are responsible of this clinical pattern. To date, no conclusive data support the reason why a few percentages of the infected individuals will develop CCC. Therefore, we decided to conduct a systematic review analysing the host genetic factors, immune response, cytokine production, virulence factors and the plausible association of the parasite DTUs and CCC. The epidemiological and clinical implications are herein discussed.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.