Menu
June 1, 2021  |  

Detecting pathogenic structural variants with low-coverage PacBio sequencing.

Though a role for structural variants in human disease has long been recognized, it has remained difficult to identify intermediate-sized variants (50 bp to 5 kb), which are too small to detect with array comparative genomic hybridization, but too large to reliably discover with short-read DNA sequencing. Recent studies have demonstrated that PacBio Single Molecule, Real-Time (SMRT) sequencing fills this technology gap. SMRT sequencing detects tens of thousands of structural variants in the human genome, approximately five times the sensitivity of short-read DNA sequencing.


June 1, 2021  |  

Structural variant detection with low-coverage PacBio sequencing

Structural variants (genomic differences =50 base pairs) contribute to the evolution of organisms traits and human disease. Most structural variants (SVs) are too small to detect with array comparative genomic hybridization but too large to reliably discover with short-read DNA sequencing. Recent studies in human genomes show that PacBio SMRT Sequencing sensitively detects structural variants.


June 1, 2021  |  

From RNA to full-length transcripts: The PacBio Iso-Seq method for transcriptome analysis and genome annotation

A single gene may encode a surprising number of proteins, each with a distinct biological function. This is especially true in complex eukaryotes. Short- read RNA sequencing (RNA-seq) works by physically shearing transcript isoforms into smaller pieces and bioinformatically reassembling them, leaving opportunity for misassembly or incomplete capture of the full diversity of isoforms from genes of interest. The PacBio Isoform Sequencing (Iso-Seq™) method employs long reads to sequence transcript isoforms from the 5’ end to their poly-A tails, eliminating the need for transcript reconstruction and inference. These long reads result in complete, unambiguous information about alternatively spliced exons, transcriptional start sites, and poly- adenylation sites. This allows for the characterization of the full complement of isoforms within targeted genes, or across an entire transcriptome. Here we present improved genome annotations for two avian models of vocal learning, Anna’s hummingbird (Calypte anna) and zebra finch (Taeniopygia guttata), using the Iso-Seq method. We present graphical user interface and command line analysis workflows for the data sets. From brain total RNA, we characterize more than 15,000 isoforms in each species, 9% and 5% of which were previously unannotated in hummingbird and zebra finch, respectively. We highlight one example where capturing full-length transcripts identifies additional exons and UTRs.


June 1, 2021  |  

Detecting pathogenic structural variants with long-read PacBio SMRT Sequencing

Most of the base pairs that differ between two human genomes are in intermediate-sized structural variants (50 bp to 5 kb), which are too small to detect with array comparative genomic hybridization or optical mapping but too large to reliably discover with short-read DNA sequencing. Long-read sequencing with PacBio Single Molecule, Real-Time (SMRT) Sequencing platforms fills this technology gap. PacBio SMRT Sequencing detects tens of thousands of structural variants in a human genome with approximately five times the sensitivity of short-read DNA sequencing. Effective application of PacBio SMRT Sequencing to detect structural variants requires quality bioinformatics tools that account for the characteristics of PacBio reads. To provide such a solution, we developed pbsv, a structural variant caller for PacBio reads that works as a chain of simple stages: 1) map reads to the reference genome, 2) identify reads with signatures of structural variation, 3) cluster nearby reads with similar signatures, 4) summarize each cluster into a consensus variant, and 5) filter for variants with sufficient read support. To evaluate the baseline performance of pbsv, we generated high coverage of a diploid human genome on the PacBio Sequel System, established a target set of structural variants, and then titrated to lower coverage levels. The false discovery rate for pbsv is low at all coverage levels. Sensitivity is high even at modest coverage: above 85% at 10-fold coverage and above 95% at 20-fold coverage. To assess the potential for PacBio SMRT Sequencing to identify pathogenic variants, we evaluated an individual with clinical symptoms suggestive of Carney complex for whom short-read whole genome sequencing was uninformative. The individual was sequenced to 9-fold coverage on the PacBio Sequel System, and structural variants were called with pbsv. Filtering for rare, genic structural variants left six candidates, including a heterozygous 2,184 bp deletion that removes the first coding exon of PRKAR1A. Null mutations in PRKAR1Acause autosomal dominant Carney complex, type 1. The variant was determined to be de novo, and it was classified as likely pathogenic based on ACMG standards and guidelines for variant interpretation. These case studies demonstrate the ability of pbsv to detect structural variants in low-coverage PacBio SMRT Sequencing and suggest the importance of considering structural variants in any study of human genetic variation.


June 1, 2021  |  

Haplotyping of full-length transcript reads from long-read sequencing can reveal allelic imbalances in isoform expression

The Pacific Biosciences Iso-Seq method, which can produce high-quality isoform sequences of 10 kb and longer, has been used to annotate many important plant and animal genomes. Here, we develop an algorithm called IsoPhase that postprocesses Iso-Seq data to retrieve allele specific isoform information. Using simulated data, we show that for both diploid and tetraploid genomes, IsoPhase results in good SNP recovery with low FDR at error rates consistent with CCS reads. We apply IsoPhase to a haplotyperesolved genome assembly and multiple fetal tissue Iso-Seq dataset from a F1 cross of Angus x Brahman cattle subspecies. IsoPhase-called haplotypes were validated by the phased assembly and demonstrate the potential for revealing allelic imbalances in isoform expression.


June 1, 2021  |  

Amplification-free, CRISPR-Cas9 targeted enrichment and SMRT Sequencing of repeat-expansion disease causative genomic regions

Targeted sequencing has proven to be economical for obtaining sequence information for defined regions of the genome. However, most target enrichment methods are reliant upon some form of amplification which can negatively impact downstream analysis. For example, amplification removes epigenetic marks present in native DNA, including nucleotide methylation, which are hypothesized to contribute to disease mechanisms in some disorders. In addition, some genomic regions known to be causative of many genetic disorders have extreme GC content and/or repetitive sequences that tend to be recalcitrant to faithful amplification. We have developed a novel, amplification-free enrichment technique that employs the CRISPR/Cas9 system to target individual genes. This method, in conjunction with the long reads, high consensus accuracy, and uniform coverage of SMRT Sequencing, allows accurate sequence analysis of complex genomic regions that cannot be investigated with other technologies. Using this strategy, we have successfully targeted a number of repeat expansion disorder loci (HTT, FMR1, ATXN10, C9orf72).With this data, we demonstrate the ability to isolate thousands of individual on-target molecules and, using the Sequel System, accurately sequence through long repeats regardless of the extreme GC-content. The method is compatible with multiplexing of multiple target loci and multiple samples in a single reaction. Furthermore, because there is no amplification step, this technique also preserves native DNA molecules for sequencing, allowing for the direct detection and characterization of epigenetic signatures. To this end, we demonstrate the detection of 5-mC in the CGG repeat of the FMR1 gene that is responsible for Fragile X syndrome.


June 1, 2021  |  

Joint calling and PacBio SMRT Sequencing for indel and structural variant detection in populations

Fast and effective variant calling algorithms have been crucial to the successful application of DNA sequencing in human genetics. In particular, joint calling – in which reads from multiple individuals are pooled to increase power for shared variants – is an important tool for population surveys of variation. Joint calling was applied by the 1000 Genomes Project to identify variants across many individuals each sequenced to low coverage (about 5-fold). This approach successfully found common small variants, but broadly missed structural variants and large indels for which short-read sequencing has limited sensitivity. To support use of large variants in rare disease and common trait association studies, it is necessary to perform population-scale surveys with a technology effective at detecting indels and structural variants, such as PacBio SMRT Sequencing. For these studies, it is important to have a joint calling workflow that works with PacBio reads. We have developed pbsv, an indel and structural variant caller for PacBio reads, that provides a two-step joint calling workflow similar to that used to build the ExAC database. The first stage, discovery, is performed separately for each sample and consolidates whole genome alignments into a sparse representation of potentially variant loci. The second stage, calling, is performed on all samples together and considers only the signatures identified in the discovery stage. We applied the pbsv joint calling workflow to PacBio reads from twenty human genomes, with coverage ranging from 5-fold to 80-fold per sample for a total of 460-fold. The analysis required only 102 CPU hours, and identified over 800,000 indels and structural variants, including hundreds of inversions and translocations, many times more than discovered with short-read sequencing. The workflow is scalable to thousands of samples. The ongoing application of this workflow to thousands of samples will provide insight into the evolution and functional importance of large variants in human evolution and disease.


June 1, 2021  |  

Improving the reference with a diversity panel of sequence-resolved structural variation

Although the accuracy of the human reference genome is critical for basic and clinical research, structural variants (SVs) have been difficult to assess because data capable of resolving them have been limited. To address potential bias, we sequenced a diversity panel of nine human genomes to high depth using long-read, single-molecule, real-time sequencing data. Systematically identifying and merging SVs =50 bp in length for these nine and one public genome yielded 83,909 sequence-resolved insertions, deletions, and inversions. Among these, 2,839 (2.0 Mbp) are shared among all discovery genomes with an additional 13,349 (6.9 Mbp) present in the majority of humans, indicating minor alleles or errors in the reference, which is partially explained by an enrichment for GC-content and repetitive DNA. Genotyping 83% of these in 290 additional genomes confirms that at least one allele of the most common SVs in unique euchromatin are now sequence-resolved. We observe a 9-fold increase within 5 Mbp of chromosome telomeric ends and correlation with de novo single-nucleotide variant mutations showing that such variation is nonrandomly distributed defining potential hotspots of mutation. We identify SVs affecting coding and noncoding regulatory loci improving annotation and interpretation of functional variation. To illustrate the utility of sequence-resolved SVs in resequencing experiments, we mapped 30 diverse high-coverage Illumina-sequenced samples to GRCh38 with and without contigs containing SV insertions as alternate sequences, and we found these additional sequences recover 6.4% of unmapped reads. For reads mapped within the SV insertion, 25.7% have a better mapping quality, and 18.7% improved by 1,000-fold or more. We reveal 72,964 occurrences of 15,814 unique variants that were not discoverable with the reference sequence alone, and we note that 7% of the insertions contain an SV in at least one sample indicating that there are additional alleles in the population that remain to be discovered. These data provide the framework to construct a canonical human reference and a resource for developing advanced representations capable of capturing allelic diversity. We present a summary of our findings and discuss ideas for revealing variation that was once difficult to ascertain.


June 1, 2021  |  

Structural variant detection with long read sequencing reveals driver and passenger mutations in a melanoma cell line

Past large scale cancer genome sequencing efforts, including The Cancer Genome Atlas and the International Cancer Genome Consortium, have utilized short-read sequencing, which is well-suited for detecting single nucleotide variants (SNVs) but far less reliable for detecting variants larger than 20 base pairs, including insertions, deletions, duplications, inversions and translocations. Recent same-sample comparisons of short- and long-read human reference genome data have revealed that short-read resequencing typically uncovers only ~4,000 structural variants (SVs, =50 bp) per genome and is biased towards deletions, whereas sequencing with PacBio long-reads consistently finds ~20,000 SVs, evenly balanced between insertions and deletions. This discovery has important implications for cancer research, as it is clear that SVs are both common and biologically important in many cancer subtypes, including colorectal, breast and ovarian cancer. Without confident and comprehensive detection of structural variants, it is unlikely we have a sufficiently complete picture of all the genomic changes that impact cancer development, disease progression, treatment response, drug resistance, and relapse. To begin to address this unmet need, we have sequenced the COLO829 tumor and matched normal lymphoblastoid cell lines to 49- and 51-fold coverage, respectively, with PacBio SMRT Sequencing, with the goal of developing a high-confidence structural variant call set that can be used to empirically evaluate cost-effective experimental designs for larger scale studies and develop structural variation calling software suitable for cancer genomics. Structural variant calling revealed over 21,000 deletions and 19,500 insertions larger than 20 bp, nearly four times the number of events detected with short-read sequencing. The vast majority of events are shared between the tumor and normal, with about 100 putative somatic deletions and 400 insertions, primarily in microsatellites. A further 40 rearrangements were detected, nearly exclusively in the tumor. One rearrangement is shared between the tumor and normal, t(5;X) which disrupts the mismatch repeat gene MSH3, and is likely a driver mutation. Generating high-confidence call sets that cover the entire size-spectrum of somatic variants from a range of cancer model systems is the first step in determining what will be the best approach for addressing an ongoing blind spot in our current understanding of cancer genomes. Here the application of PacBio sequencing to a melanoma cancer cell line revealed thousands of previously overlooked variants, including a mutation likely involved in tumorogenesis.


June 1, 2021  |  

Structural variant detection in crops using low-fold coverage long-read sequencing

Genomics studies have shown that the insertions, deletions, duplications, translocations, inversions, and tandem repeat expansions in the structural variant (SV) size range (>50 bp) contribute to the evolution of traits and often have significant associations with agronomically important phenotypes. However, most SVs are too small to detect with array comparative genomic hybridization and too large to reliably discover with short-read DNA sequencing. While de novo assembly is the most comprehensive way to identify variants in a genome, recent studies in human genomes show that PacBio SMRT Sequencing sensitively detects structural variants at low coverage. Here we present SV characterization in the major crop species Oryza sativa subsp. indica (rice) with low-fold coverage of long reads. In addition, we provide recommendations for sequencing and analysis for the application of this workflow to other important agricultural species.


June 1, 2021  |  

Comparison of sequencing approaches applied to complex soil metagenomes to resolve proteins of interest

Background: Long-read sequencing presents several potential advantages for providing more complete gene profiling of metagenomic samples. Long reads can capture multiple genes in a single read, and longer reads typically result in assemblies with better contiguity, especially for higher abundance organisms. However, a major challenge with using long reads has been the higher cost per base, which may lead to insufficient coverage of low-abundance species. Additionally, lower single-pass accuracy can make gene discovery for low-abundance organisms difficult. Methods: To evaluate the pros and cons of long reads for metagenomics, we directly compared PacBio and Illumina sequencing on a soil-derived sample, which included spike-in controls of known concentrations of pure referenced samples. For PacBio sequencing, a 10 kb library was sequenced on the Sequel System with 3.0 chemistry. Highly accurate long reads (HiFi reads) with Q20 and higher were generated for downstream analyses using PacBio Circular Consensus Sequencing (CCS) mode. Results were assessed according to the following criteria: DNA extraction capacity, bioinformatics pipeline status, % of proteins with ambiguous AA’s, total unique error-free genes/$1000, total proteins observed in spike-ins/$1000, proteins of interest/$1000, median length of contigs with proteins, and assembly requirements. Results: Both methods had areas of superior performance. DNA extraction capacity was higher for Illumina, the bioinformatics pipeline is well-tested, and there was a lower proportion of proteins with ambiguous AA’s. On the other hand, with PacBio, twice as many unique error-free genes, twice as many total proteins from spike-ins, and ~6 times more proteins of interest were found per $1000 cost. PacBio data produced on average 5 times longer contigs capturing proteins of interest. Additionally, assembly was not required for gene or protein finding, as was the case with Illumina data. Conclusions: In this comparison of PacBio Sequel System with Illumina NextSeq on a complex microbiome, we conclude that the sequencing system of choice may vary, depending on the goals and resources for the project. PacBio sequencing requires a longer DNA extraction method, and the bioinformatics pipeline may require development. On the other hand, the Sequel System generates hundreds of thousands of long HiFi reads per SMRT Cell, producing more genes, more proteins, and longer contigs, thereby offering more information about the metagenomic samples for a lower cost.


June 1, 2021  |  

Unbiased characterization of metagenome composition and function using HiFi sequencing on the PacBio Sequel II System

Recent work comparing metagenomic sequencing methods indicates that a comprehensive picture of the taxonomic and functional diversity of complex communities will be difficult to achieve with short-read technology alone. While the lower cost of short reads has enabled greater sequencing depth, the greater contiguity of long-read assemblies and lack of GC bias in SMRT Sequencing has enabled better gene finding. However, since long-read assembly requires high coverage for error correction, the benefits of unbiased coverage have in the past been lost for low abundance species. SMRT Sequencing performance improvements and the introduction of the Sequel II System has enabled a new, high throughput data type uniquely suited to metagenome characterization: HiFi reads. HiFi reads combine high accuracy with read lengths up to 15 kb, eliminating the need for assembly for most microbiome applications, including functional profiling, gene discovery, and metabolic pathway reconstruction. Here we present the application of the HiFi data type to enable a new method of analyzing metagenomes that does not require assembly.


June 1, 2021  |  

Comprehensive structural and copy-number variant detection with long reads

To comprehensively detect large variants in human genomes, we have extended pbsv – a structural variant caller for long reads – to call copy-number variants (CNVs) from read-clipping and read-depth signatures. In human germline benchmark samples, we detect more than 300 CNVs spanning around 10 Mb, and we call hundreds of additional events in re-arranged cancer samples. Long-read sequencing of diverse humans has revealed more than 20,000 insertion, deletion, and inversion structural variants spanning more than 12 Mb in a typical human genome. Most of these variants are too large to detect with short reads and too small for array comparative genome hybridization (aCGH). While the standard approaches to calling structural variants with long reads thrive in the 50 bp to 10 kb size range, they tend to miss exactly the large (>50 kb) copy-number variants that are called more readily with aCGH and short reads. Standard algorithms rely on reference-based mapping of reads that fully span a variant or on de novo assembly; and copy-number variants are often too large to be spanned by a single read and frequently involve segmentally duplicated sequence that is not yet included in most de novo assemblies.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.