June 1, 2021  |  

Resources for advanced bioinformaticians working in plant and animal genomes with SMRT Sequencing.

Significant advances in bioinformatics tool development have been made to more efficiently leverage and deliver high-quality genome assemblies with PacBio long-read data. Current data throughput of SMRT Sequencing delivers average read lengths ranging from 10-15 kb with the longest reads exceeding 40 kb. This has resulted in consistent demonstration of a minimum 10-fold improvement in genome assemblies with contig N50 in the megabase range compared to assemblies generated using only short- read technologies. This poster highlights recent advances and resources available for advanced bioinformaticians and developers interested in the current state-of-the-art large genome solutions available as open-source code from PacBio and third-party solutions, including HGAP, MHAP, and ECTools. Resources and tools available on GitHub are reviewed, as well as datasets representing major model research organisms made publically available for community evaluation or interested developers.


June 1, 2021  |  

Toward comprehensive genomics analysis with de novo assembly.

Whole genome sequencing can provide comprehensive information important for determining the biochemical and genetic nature of all elements inside a genome. The high-quality genome references produced from past genome projects and advances in short-read sequencing technologies have enabled quick and cheap analysis for simple variants. However even with the focus on genome-wide resequencing for SNPs, the heritability of more than 50% of human diseases remains elusive. For non-human organisms, high-contiguity references are deficient, limiting the analysis of genomic features. The long and unbiased reads from single molecule, real-time (SMRT) Sequencing and new de novo assembly approaches have demonstrated the ability to detect more complicated variants and chromosome-level phasing. Moreover, with the recent advance of bioinformatics algorithms and tools, the computation tasks for completing high-quality de novo assembly of large genomes becomes feasible with commodity hardware. Ongoing development in sequencing technologies and bioinformatics will likely lead to routine generation of high-quality reference assemblies in the future. We discuss the current state of art and the challenges in bioinformatics toward such a goal. More specifically, explicit examples of pragmatic computational requirements for assembling mammalian-size genomes and algorithms suitable for processing diploid genomes are discussed.


June 1, 2021  |  

Diploid genome assembly and comprehensive haplotype sequence reconstruction

Outside of the simplest cases (haploid, bacteria, or inbreds), genomic information is not carried in a single reference per individual, but rather has higher ploidy (n=>2) for almost all organisms. The existence of two or more highly related sequences within an individual makes it extremely difficult to build high quality, highly contiguous genome assemblies from short DNA fragments. Based on the earlier work on a polyploidy aware assembler, FALCON ( https://github.com/PacificBiosciences/FALCON) , we developed new algorithms and software (“FALCON-unzip”) for de novo haplotype reconstructions from SMRT Sequencing data. We generate two datasets for developing the algorithms and the prototype software: (1) whole genome sequencing data from a highly repetitive diploid fungal (Clavicorona pyxidata) and (2) whole genome sequencing data from an F1 hybrid from two inbred Arabidopsis strains: Cvi-0 and Col-0. For the fungal genome, we achieved an N50 of 1.53 Mb (of the 1n assembly contigs) of the ~42 Mb 1n genome and an N50 of the haplotigs (haplotype specific contigs) of 872 kb from a 95X read length N50 ~16 kb dataset. We found that ~ 45% of the genome was highly heterozygous and ~55% of the genome was highly homozygous. We developed methods to assess the base-level accuracy and local haplotype phasing accuracy of the assembly with short-read data from the Illumina® platform. For the ArabidopsisF1 hybrid genome, we found that 80% of the genome could be separated into haplotigs. The long range accuracy of phasing haplotigs was evaluated by comparing them to the assemblies from the two inbred parental lines. We show that a more complete view of all haplotypes could provide useful biological insights through improved annotation, characterization of heterozygous variants of all sizes, and resolution of differential allele expression. The current Falcon-Unzip method will lead to understand how to solve more difficult polyploid genome assembly problems and improve the computational efficiency for large genome assemblies. Based on this work, we can develop a pipeline enabling routinely assemble diploid or polyploid genomes as haplotigs, representing a comprehensive view of the genomes that can be studied with the information at hand.


June 1, 2021  |  

Un-zipping diploid genomes – revealing all kinds of heterozygous variants from comprehensive hapltotig assemblies

Outside of the simplest cases (haploid, bacteria, or inbreds), genomic information is not carried in a single reference per individual, but rather has higher ploidy (n=>2) for almost all organisms. The existence of two or more highly related sequences within an individual makes it extremely difficult to build high quality, highly contiguous genome assemblies from short DNA fragments. Based on the earlier work on a polyploidy aware assembler, FALCON (https://github.com/PacificBiosciences/FALCON), we developed new algorithms and software (FALCON-unzip) for de novo haplotype reconstructions from SMRT Sequencing data. We apply the algorithms and the prototype software for (1) a highly repetitive diploid fungal genome (Clavicorona pyxidata) and (2) an F1 hybrid from two inbred Arabidopsis strains: CVI-0 and COL-0. For the fungal genome, we achieved an N50 of 1.53 Mb (of the 1n assembly contigs) of the ~42 Mb 1n genome and an N50 of the haplotigs of 872 kb from a 95X read length N50 ~16 kb dataset. We found that ~ 45% of the genome was highly heterozygous and ~55% of the genome was highly homozygous. We developed methods to assess the base-level accuracy and local haplotype phasing accuracy of the assembly with short-read data from the Illumina platform. For the Arabidopsis F1 hybrid genome, we found that 80% of the genome could be separated into haplotigs. The long range accuracy of phasing haplotigs was evaluated by comparing them to the assemblies from the two inbred parental lines. We show that a more complete view of all haplotypes could provide useful biological insights through improved annotation, characterization of heterozygous variants of all sizes, and resolution of differential allele expression. Finally, we applied this method to WGS human data sets to demonstrate the potential for resolving complicated, medically-relevant genomic regions.


June 1, 2021  |  

Phased human genome assemblies with Single Molecule, Real-Time Sequencing

In recent years, human genomic research has focused on comparing short-read data sets to a single human reference genome. However, it is becoming increasingly clear that significant structural variations present in individual human genomes are missed or ignored by this approach. Additionally, remapping short-read data limits the phasing of variation among individual chromosomes. This reduces the newly sequenced genome to a table of single nucleotide polymorphisms (SNPs) with little to no information as to the co-linearity (phasing) of these variants, resulting in a “mosaic” reference representing neither of the parental chromosomes. The variation between the homologous chromosomes is lost in this representation, including allelic variations, structural variations, or even genes present in only one chromosome, leading to lost information regarding allelic-specific gene expression and function. To address these limitations, we have made significant progress integrating haplotype information directly into genome assembly process with long reads. The FALCON-Unzip algorithm leverages a string graph assembly approach to facilitate identification and separation of heterozygosity during the assembly process to produce a highly contiguous assembly with phased haplotypes representing the genome in its diploid state. The outputs of the assembler are pairs of sequences (haplotigs) containing the allelic differences, including SNPs and structural variations, present in the two sets of chromosomes. The development and testing of our de-novo diploid assembler was facilitated and carefully validated using inbred reference model organisms and F1 progeny, which allowed us to ascertain the accuracy and concordance of haplotigs relative to the two inbred parental assemblies. Examination of the results confirmed that our haplotype-resolved assemblies are “Gold Level” reference genomes having a quality similar to that of Sanger-sequencing, BAC-based assembly approaches. We further sequenced and assembled two well-characterized human samples into their respective phased diploid genomes with gap-free contig N50 sizes greater than 23 Mb and haplotig N50 sizes greater than 380 kb. Results of these assemblies and a comparison between the haplotype sets are presented.


June 1, 2021  |  

Phased diploid genome assembly with single-molecule real-time sequencing

While genome assembly projects have been successful in many haploid and inbred species, the assembly of non-inbred or rearranged heterozygous genomes remains a major challenge. To address this challenge, we introduce the open-source FALCON and FALCON-Unzip algorithms (https://github.com/PacificBiosciences/FALCON/) to assemble long-read sequencing data into highly accurate, contiguous, and correctly phased diploid genomes. We generate new reference sequences for heterozygous samples including an F1 hybrid of Arabidopsis thaliana, the widely cultivated Vitis vinifera cv. Cabernet Sauvignon, and the coral fungus Clavicorona pyxidata, samples that have challenged short-read assembly approaches. The FALCON-based assemblies are substantially more contiguous and complete than alternate short- or long-read approaches. The phased diploid assembly enabled the study of haplotype structure and heterozygosities between homologous chromosomes, including the identification of widespread heterozygous structural variation within coding sequences.


June 1, 2021  |  

De novo PacBio long-read assembled avian genomes correct and add to genes important in neuroscience and conservation research

To test the impact of high-quality genome assemblies on biological research, we applied PacBio long-read sequencing in conjunction with the new, diploid-aware FALCON-Unzip assembler to a number of bird species. These included: the zebra finch, for which a consortium-generated, Sanger-based reference exists, to determine how the FALCON-Unzip assembly would compare to the current best references available; Anna’s hummingbird genome, which had been assembled with short-read sequencing methods as part of the Avian Phylogenomics phase I initiative; and two critically endangered bird species (kakapo and ‘alala) of high importance for conservations efforts, whose genomes had not previously been sequenced and assembled.


June 1, 2021  |  

FALCON-Phase integrates PacBio and HiC data for de novo assembly, scaffolding and phasing of a diploid Puerto Rican genome (HG00733)

Haplotype-resolved genomes are important for understanding how combinations of variants impact phenotypes. The study of disease, quantitative traits, forensics, and organ donor matching are aided by phased genomes. Phase is commonly resolved using familial data, population-based imputation, or by isolating and sequencing single haplotypes using fosmids, BACs, or haploid tissues. Because these methods can be prohibitively expensive, or samples may not be available, alternative approaches are required. de novo genome assembly with PacBio Single Molecule, Real-Time (SMRT) data produces highly contiguous, accurate assemblies. For non-inbred samples, including humans, the separate resolution of haplotypes results in higher base accuracy and more contiguous assembled sequences. Two primary methods exist for phased diploid genome assembly. The first, TrioCanu requires Illumina data from parents and PacBio data from the offspring. The long reads from the child are partitioned into maternal and paternal bins using parent-specific sequences; the separate PacBio read bins are then assembled, generating two fully phased genomes. An alternative approach (FALCON-Unzip) does not require parental information and separates PacBio reads, during genome assembly, using heterozygous SNPs. The length of haplotype phase blocks in FALCON-Unzip is limited by the magnitude and distribution of heterozygosity, the length of sequence reads, and read coverage. Because of this, FALCON-Unzip contigs typically contain haplotype-switch errors between phase blocks, resulting in primary contig of mixed parental origin. We developed FALCON-Phase, which integrates Hi-C data downstream of FALCON-Unzip to resolve phase switches along contigs. We applied the method to a human (Puerto Rican, HG00733) and non-human genome assemblies and evaluated accuracy using samples with trio data. In a cattle genome, we observe >96% accuracy in phasing when compared to TrioCanu assemblies as well as parental SNPs. For a high-quality PacBio assembly (>90-fold Sequel coverage) of a Puerto Rican individual we scaffolded the FALCON-Phase contigs, and re-phased the contigs creating a de novo scaffolded, phased diploid assembly with chromosome-scale contiguity.


April 21, 2020  |  

Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads.

The sequence and assembly of human genomes using long-read sequencing technologies has revolutionized our understanding of structural variation and genome organization. We compared the accuracy, continuity, and gene annotation of genome assemblies generated from either high-fidelity (HiFi) or continuous long-read (CLR) datasets from the same complete hydatidiform mole human genome. We find that the HiFi sequence data assemble an additional 10% of duplicated regions and more accurately represent the structure of tandem repeats, as validated with orthogonal analyses. As a result, an additional 5 Mbp of pericentromeric sequences are recovered in the HiFi assembly, resulting in a 2.5-fold increase in the NG50 within 1 Mbp of the centromere (HiFi 480.6 kbp, CLR 191.5 kbp). Additionally, the HiFi genome assembly was generated in significantly less time with fewer computational resources than the CLR assembly. Although the HiFi assembly has significantly improved continuity and accuracy in many complex regions of the genome, it still falls short of the assembly of centromeric DNA and the largest regions of segmental duplication using existing assemblers. Despite these shortcomings, our results suggest that HiFi may be the most effective standalone technology for de novo assembly of human genomes. © 2019 John Wiley & Sons Ltd/University College London.


April 21, 2020  |  

Chromosome-length haplotigs for yak and cattle from trio binning assembly of an F1 hybrid

Background Assemblies of diploid genomes are generally unphased, pseudo-haploid representations that do not correctly reconstruct the two parental haplotypes present in the individual sequenced. Instead, the assembly alternates between parental haplotypes and may contain duplications in regions where the parental haplotypes are sufficiently different. Trio binning is an approach to genome assembly that uses short reads from both parents to classify long reads from the offspring according to maternal or paternal haplotype origin, and is thus helped rather than impeded by heterozygosity. Using this approach, it is possible to derive two assemblies from an individual, accurately representing both parental contributions in their entirety with higher continuity and accuracy than is possible with other methods.Results We used trio binning to assemble reference genomes for two species from a single individual using an interspecies cross of yak (Bos grunniens) and cattle (Bos taurus). The high heterozygosity inherent to interspecies hybrids allowed us to confidently assign >99% of long reads from the F1 offspring to parental bins using unique k-mers from parental short reads. Both the maternal (yak) and paternal (cattle) assemblies contain over one third of the acrocentric chromosomes, including the two largest chromosomes, in single haplotigs.Conclusions These haplotigs are the first vertebrate chromosome arms to be assembled gap-free and fully phased, and the first time assemblies for two species have been created from a single individual. Both assemblies are the most continuous currently available for non-model vertebrates.MbmegabaseskbkilobasesMYAmillions of years agoMHCmajor histocompatibility complexSMRTsingle molecule real time


April 21, 2020  |  

Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes.

African cichlid fishes are well known for their rapid radiations and are a model system for studying evolutionary processes. Here we compare multiple, high-quality, chromosome-scale genome assemblies to elucidate the genetic mechanisms underlying cichlid diversification and study how genome structure evolves in rapidly radiating lineages.We re-anchored our recent assembly of the Nile tilapia (Oreochromis niloticus) genome using a new high-density genetic map. We also developed a new de novo genome assembly of the Lake Malawi cichlid, Metriaclima zebra, using high-coverage Pacific Biosciences sequencing, and anchored contigs to linkage groups (LGs) using 4 different genetic maps. These new anchored assemblies allow the first chromosome-scale comparisons of African cichlid genomes. Large intra-chromosomal structural differences (~2-28 megabase pairs) among species are common, while inter-chromosomal differences are rare (<10 megabase pairs total). Placement of the centromeres within the chromosome-scale assemblies identifies large structural differences that explain many of the karyotype differences among species. Structural differences are also associated with unique patterns of recombination on sex chromosomes. Structural differences on LG9, LG11, and LG20 are associated with reduced recombination, indicative of inversions between the rock- and sand-dwelling clades of Lake Malawi cichlids. M. zebra has a larger number of recent transposable element insertions compared with O. niloticus, suggesting that several transposable element families have a higher rate of insertion in the haplochromine cichlid lineage.This study identifies novel structural variation among East African cichlid genomes and provides a new set of genomic resources to support research on the mechanisms driving cichlid adaptation and speciation. © The Author(s) 2019. Published by Oxford University Press.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.