Menu
April 21, 2020  |  

The Single-molecule long-read sequencing of Scylla paramamosain.

Scylla paramamosain is an important aquaculture crab, which has great economical and nutritional value. To the best of our knowledge, few full-length crab transcriptomes are available. In this study, a library composed of 12 different tissues including gill, hepatopancreas, muscle, cerebral ganglion, eyestalk, thoracic ganglia, intestine, heart, testis, ovary, sperm reservoir, and hemocyte was constructed and sequenced using Pacific Biosciences single-molecule real-time (SMRT) long-read sequencing technology. A total of 284803 full-length non-chimeric reads were obtained, from which 79005 high-quality unique transcripts were obtained after error correction and sequence clustering and redundant. Additionally, a total of 52544 transcripts were annotated against protein database (NCBI nonredundant, Swiss-Prot, KOG, and KEGG database). A total of 23644 long non-coding RNAs (lncRNAs) and 131561 simple sequence repeats (SSRs) were identified. Meanwhile, the isoforms of many genes were also identified in this study. Our study provides a rich set of full-length cDNA sequences for S. paramamosain, which will greatly facilitate S. paramamosain research.


April 21, 2020  |  

Metatranscriptomic evidence for classical and RuBisCO-mediated CO2 reduction to methane facilitated by direct interspecies electron transfer in a methanogenic system.

In a staged anaerobic fluidized-bed ceramic membrane bioreactor, metagenomic and metatranscriptomic analyses were performed to decipher the microbial interactions on the granular activated carbon. Metagenome bins, representing the predominating microbes in the bioreactor: syntrophic propionate-oxidizing bacteria (SPOB), acetoclastic Methanothrix concilii, and exoelectrogenic Geobacter lovleyi, were successfully recovered for the reconstruction and analysis of metabolic pathways involved in the transformation of fatty acids to methane. In particular, SPOB degraded propionate into acetate, which was further converted into methane and CO2 by M. concilii via the acetoclastic methanogenesis. Concurrently, G. lovleyi oxidized acetate into CO2, releasing electrons into the extracellular environment. By accepting these electrons through direct interspecies electron transfer (DIET), M. concilii was capable of performing CO2 reduction for further methane formation. Most notably, an alternative RuBisCO-mediated CO2 reduction (the reductive hexulose-phosphate (RHP) pathway) is transcriptionally-active in M. concilii. This RHP pathway enables M. concilii dominance and energy gain by carbon fixation and methanogenesis, respectively via a methyl-H4MPT intermediate, constituting the third methanogenesis route. The complete acetate reduction (2 mole methane formation/1 mole acetate consumption), coupling of acetoclastic methanogenesis and two CO2 reduction pathways, are thermodynamically favorable even under very low substrate condition (down to to 10-5?M level). Such tight interactions via both mediated and direct interspecies electron transfer (MIET and DIET), induced by the conductive GAC promote the overall efficiency of bioenergy processes.


April 21, 2020  |  

Platanus-allee is a de novo haplotype assembler enabling a comprehensive access to divergent heterozygous regions.

The ultimate goal for diploid genome determination is to completely decode homologous chromosomes independently, and several phasing programs from consensus sequences have been developed. These methods work well for lowly heterozygous genomes, but the manifold species have high heterozygosity. Additionally, there are highly divergent regions (HDRs), where the haplotype sequences differ considerably. Because HDRs are likely to direct various interesting biological phenomena, many genomic analysis targets fall within these regions. However, they cannot be accessed by existing phasing methods, and we have to adopt costly traditional methods. Here, we develop a de novo haplotype assembler, Platanus-allee ( http://platanus.bio.titech.ac.jp/platanus2 ), which initially constructs each haplotype sequence and then untangles the assembly graphs utilizing sequence links and synteny information. A comprehensive benchmark analysis reveals that Platanus-allee exhibits high recall and precision, particularly for HDRs. Using this approach, previously unknown HDRs are detected in the human genome, which may uncover novel aspects of genome variability.


April 21, 2020  |  

Whole genome sequence and de novo assembly revealed genomic architecture of Indian Mithun (Bos frontalis).

Mithun (Bos frontalis), also called gayal, is an endangered bovine species, under the tribe bovini with 2n?=?58 XX chromosome complements and reared under the tropical rain forests region of India, China, Myanmar, Bhutan and Bangladesh. However, the origin of this species is still disputed and information on its genomic architecture is scanty so far. We trust that availability of its whole genome sequence data and assembly will greatly solve this problem and help to generate many information including phylogenetic status of mithun. Recently, the first genome assembly of gayal, mithun of Chinese origin, was published. However, an improved reference genome assembly would still benefit in understanding genetic variation in mithun populations reared under diverse geographical locations and for building a superior consensus assembly. We, therefore, performed deep sequencing of the genome of an adult female mithun from India, assembled and annotated its genome and performed extensive bioinformatic analyses to produce a superior de novo genome assembly of mithun.We generated ˜300 Gigabyte (Gb) raw reads from whole-genome deep sequencing platforms and assembled the sequence data using a hybrid assembly strategy to create a high quality de novo assembly of mithun with 96% recovered as per BUSCO analysis. The final genome assembly has a total length of 3.0 Gb, contains 5,015 scaffolds with an N50 value of 1?Mb. Repeat sequences constitute around 43.66% of the assembly. The genomic alignments between mithun to cattle showed that their genomes, as expected, are highly conserved. Gene annotation identified 28,044 protein-coding genes presented in mithun genome. The gene orthologous groups of mithun showed a high degree of similarity in comparison with other species, while fewer mithun specific coding sequences were found compared to those in cattle.Here we presented the first de novo draft genome assembly of Indian mithun having better coverage, less fragmented, better annotated, and constitutes a reasonably complete assembly compared to the previously published gayal genome. This comprehensive assembly unravelled the genomic architecture of mithun to a great extent and will provide a reference genome assembly to research community to elucidate the evolutionary history of mithun across its distinct geographical locations.


April 21, 2020  |  

Reconstruction of the full-length transcriptome atlas using PacBio Iso-Seq provides insight into the alternative splicing in Gossypium australe.

Gossypium australe F. Mueller (2n?=?2x?=?26, G2 genome) possesses valuable characteristics. For example, the delayed gland morphogenesis trait causes cottonseed protein and oil to be edible while retaining resistance to biotic stress. However, the lack of gene sequences and their alternative splicing (AS) in G. australe remain unclear, hindering to explore species-specific biological morphogenesis.Here, we report the first sequencing of the full-length transcriptome of the Australian wild cotton species, G. australe, using Pacific Biosciences single-molecule long-read isoform sequencing (Iso-Seq) from the pooled cDNA of ten tissues to identify transcript loci and splice isoforms. We reconstructed the G. australe full-length transcriptome and identified 25,246 genes, 86 pre-miRNAs and 1468 lncRNAs. Most genes (12,832, 50.83%) exhibited two or more isoforms, suggesting a high degree of transcriptome complexity in G. australe. A total of 31,448 AS events in five major types were found among the 9944 gene loci. Among these five major types, intron retention was the most frequent, accounting for 68.85% of AS events. 29,718 polyadenylation sites were detected from 14,536 genes, 7900 of which have alternative polyadenylation sites (APA). In addition, based on our AS events annotations, RNA-Seq short reads from germinating seeds showed that differential expression of these events occurred during seed germination. Ten AS events that were randomly selected were further confirmed by RT-PCR amplification in leaf and germinating seeds.The reconstructed gene sequences and their AS in G. australe would provide information for exploring beneficial characteristics in G. australe.


April 21, 2020  |  

De novo transcriptome assembly of the cubomedusa Tripedalia cystophora, including the analysis of a set of genes involved in peptidergic neurotransmission.

The phyla Cnidaria, Placozoa, Ctenophora, and Porifera emerged before the split of proto- and deuterostome animals, about 600 million years ago. These early metazoans are interesting, because they can give us important information on the evolution of various tissues and organs, such as eyes and the nervous system. Generally, cnidarians have simple nervous systems, which use neuropeptides for their neurotransmission, but some cnidarian medusae belonging to the class Cubozoa (box jellyfishes) have advanced image-forming eyes, probably associated with a complex innervation. Here, we describe a new transcriptome database from the cubomedusa Tripedalia cystophora.Based on the combined use of the Illumina and PacBio sequencing technologies, we produced a highly contiguous transcriptome database from T. cystophora. We then developed a software program to discover neuropeptide preprohormones in this database. This script enabled us to annotate seven novel T. cystophora neuropeptide preprohormone cDNAs: One coding for 19 copies of a peptide with the structure pQWLRGRFamide; one coding for six copies of a different RFamide peptide; one coding for six copies of pQPPGVWamide; one coding for eight different neuropeptide copies with the C-terminal LWamide sequence; one coding for thirteen copies of a peptide with the RPRAamide C-terminus; one coding for four copies of a peptide with the C-terminal GRYamide sequence; and one coding for seven copies of a cyclic peptide, of which the most frequent one has the sequence CTGQMCWFRamide. We could also identify orthologs of these seven preprohormones in the cubozoans Alatina alata, Carybdea xaymacana, Chironex fleckeri, and Chiropsalmus quadrumanus. Furthermore, using TBLASTN screening, we could annotate four bursicon-like glycoprotein hormone subunits, five opsins, and 52 other family-A G protein-coupled receptors (GPCRs), which also included two leucine-rich repeats containing G protein-coupled receptors (LGRs) in T. cystophora. The two LGRs are potential receptors for the glycoprotein hormones, while the other GPCRs are candidate receptors for the above-mentioned neuropeptides.By combining Illumina and PacBio sequencing technologies, we have produced a new high-quality de novo transcriptome assembly from T. cystophora that should be a valuable resource for identifying the neuronal components that are involved in vision and other behaviors in cubomedusae.


April 21, 2020  |  

Assignment of virus and antimicrobial resistance genes to microbial hosts in a complex microbial community by combined long-read assembly and proximity ligation.

We describe a method that adds long-read sequencing to a mix of technologies used to assemble a highly complex cattle rumen microbial community, and provide a comparison to short read-based methods. Long-read alignments and Hi-C linkage between contigs support the identification of 188 novel virus-host associations and the determination of phage life cycle states in the rumen microbial community. The long-read assembly also identifies 94 antimicrobial resistance genes, compared to only seven alleles in the short-read assembly. We demonstrate novel techniques that work synergistically to improve characterization of biological features in a highly complex rumen microbial community.


April 21, 2020  |  

Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain diversity and an active phage system.

Complete and contiguous genome assemblies greatly improve the quality of subsequent systems-wide functional profiling studies and the ability to gain novel biological insights. While a de novo genome assembly of an isolated bacterial strain is in most cases straightforward, more informative data about co-existing bacteria as well as synergistic and antagonistic effects can be obtained from a direct analysis of microbial communities. However, the complexity of metagenomic samples represents a major challenge. While third generation sequencing technologies have been suggested to enable finished metagenome-assembled genomes, to our knowledge, the complete genome assembly of all dominant strains in a microbiome sample has not been demonstrated. Natural whey starter cultures (NWCs) are used in cheese production and represent low-complexity microbiomes. Previous studies of Swiss Gruyère and selected Italian hard cheeses, mostly based on amplicon metagenomics, concurred that three species generally pre-dominate: Streptococcus thermophilus, Lactobacillus helveticus and Lactobacillus delbrueckii.Two NWCs from Swiss Gruyère producers were subjected to whole metagenome shotgun sequencing using the Pacific Biosciences Sequel and Illumina MiSeq platforms. In addition, longer Oxford Nanopore Technologies MinION reads had to be generated for one to resolve repeat regions. Thereby, we achieved the complete assembly of all dominant bacterial genomes from these low-complexity NWCs, which was corroborated by a 16S rRNA amplicon survey. Moreover, two distinct L. helveticus strains were successfully co-assembled from the same sample. Besides bacterial chromosomes, we could also assemble several bacterial plasmids and phages and a corresponding prophage. Biologically relevant insights were uncovered by linking the plasmids and phages to their respective host genomes using DNA methylation motifs on the plasmids and by matching prokaryotic CRISPR spacers with the corresponding protospacers on the phages. These results could only be achieved by employing long-read sequencing data able to span intragenomic as well as intergenomic repeats.Here, we demonstrate the feasibility of complete de novo genome assembly of all dominant strains from low-complexity NWCs based on whole metagenomics shotgun sequencing data. This allowed to gain novel biological insights and is a fundamental basis for subsequent systems-wide omics analyses, functional profiling and phenotype to genotype analysis of specific microbial communities.


April 21, 2020  |  

Cichorium intybus L.?×?Cicerbita alpina Walbr.: doubled haploid chicory induction and CENH3 characterization

Intergeneric hybridization between industrial chicory (Cichorium intybus L.) and Cicerbita alpina Walbr. induces interspecific hybrids and haploid chicory plants after in vitro embryo rescue. The protocol yielded haploids in 5 out of 12 cultivars pollinated; altogether 18 haploids were regenerated from 2836 embryos, with a maximum efficiency of 1.96% haploids per cross. Obtained haploids were chromosome doubled with mitosis inhibitors trifluralin and oryzalin; exposure to 0.05 g L-1 oryzalin during one week was the most efficient treatment to regenerate doubled haploids. Inbreeding effects in vitro were limited, but the ploidy level affects morphology. Transcriptome sequencing revealed two unique copies of CENH3 in Cicerbita alpina Walbr. Comparison of CENH3.1 protein sequences of Cicerbita and Cichorium obtained through transcriptome and whole shotgun genome sequencing revealed two amino-acid substitutions at critical residues of the histone fold domain. These particular changes cause chromosome elimination and reduced centromere loading in several other species and might indicate a CENH3-dependent mechanism causing chromosome elimination of parental chromosomes during Cichorium?×?Cicerbita intergeneric hybridization. Our results provide insights in chromosome elimination and might increase the efficiency of haploid induction in Cichorium.


April 21, 2020  |  

Comparative Phylogenomics, a Stepping Stone for Bird Biodiversity Studies

Birds are a group with immense availability of genomic resources, and hundreds of forthcoming genomes at the doorstep. We review recent developments in whole genome sequencing, phylogenomics, and comparative genomics of birds. Short read based genome assemblies are common, largely due to efforts of the Bird 10K genome project (B10K). Chromosome-level assemblies are expected to increase due to improved long-read sequencing. The available genomic data has enabled the reconstruction of the bird tree of life with increasing confidence and resolution, but challenges remain in the early splits of Neoaves due to their explosive diversification after the Cretaceous-Paleogene (K-Pg) event. Continued genomic sampling of the bird tree of life will not just better reflect their evolutionary history but also shine new light onto the organization of phylogenetic signal and conflict across the genome. The comparatively simple architecture of avian genomes makes them a powerful system to study the molecular foundation of bird specific traits. Birds are on the verge of becoming an extremely resourceful system to study biodiversity from the nucleotide up.


April 21, 2020  |  

CAMISIM: simulating metagenomes and microbial communities.

Shotgun metagenome data sets of microbial communities are highly diverse, not only due to the natural variation of the underlying biological systems, but also due to differences in laboratory protocols, replicate numbers, and sequencing technologies. Accordingly, to effectively assess the performance of metagenomic analysis software, a wide range of benchmark data sets are required.We describe the CAMISIM microbial community and metagenome simulator. The software can model different microbial abundance profiles, multi-sample time series, and differential abundance studies, includes real and simulated strain-level diversity, and generates second- and third-generation sequencing data from taxonomic profiles or de novo. Gold standards are created for sequence assembly, genome binning, taxonomic binning, and taxonomic profiling. CAMSIM generated the benchmark data sets of the first CAMI challenge. For two simulated multi-sample data sets of the human and mouse gut microbiomes, we observed high functional congruence to the real data. As further applications, we investigated the effect of varying evolutionary genome divergence, sequencing depth, and read error profiles on two popular metagenome assemblers, MEGAHIT, and metaSPAdes, on several thousand small data sets generated with CAMISIM.CAMISIM can simulate a wide variety of microbial communities and metagenome data sets together with standards of truth for method evaluation. All data sets and the software are freely available at https://github.com/CAMI-challenge/CAMISIM.


April 21, 2020  |  

External memory BWT and LCP computation for sequence collections with applications

Background: Sequencing technologies produce larger and larger collections of biosequences that have to be stored in compressed indices supporting fast search operations. Many compressed indices are based on the Bur- rows–Wheeler Transform (BWT) and the longest common prefix (LCP) array. Because of the sheer size of the input it is important to build these data structures in external memory and time using in the best possible way the available RAM. Results: We propose a space-efficient algorithm to compute the BWT and LCP array for a collection of sequences in the external or semi-external memory setting. Our algorithm splits the input collection into subcollections sufficiently small that it can compute their BWT in RAM using an optimal linear time algorithm. Next, it merges the partial BWTs in external or semi-external memory and in the process it also computes the LCP values. Our algorithm can be modi- fied to output two additional arrays that, combined with the BWT and LCP array, provide simple, scan-based, external memory algorithms for three well known problems in bioinformatics: the computation of maximal repeats, the all pairs suffix–prefix overlaps, and the construction of succinct de Bruijn graphs. Conclusions: We prove that our algorithm performs O(nmaxlcp) sequential I/Os, where n is the total length of the collection and maxlcp is the maximum LCP value. The experimental results show that our algorithm is only slightly slower than the state of the art for short sequences but it is up to 40 times faster for longer sequences or when the available RAM is at least equal to the size of the input.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.