Explore how high-quality genomes contribute to critical scientific endeavors.
Many scientists are using PacBio Single Molecule, Real-Time (SMRT) Sequencing to explore the genomes and transcriptomes of a wide variety of marine species and ecosystems. These studies are already adding to our understanding of how marine species adapt and evolve, contributing to conservation efforts, and informing how we can optimize food production through efficient aquaculture.
Explore how highly accurate long-read sequencing enabled sequencing the large and highly complex California redwood genome.
The study of genomics has revolutionized our understanding of science, but the field of transcriptomics grew with the need to explore the functional impacts of genetic variation. While different tissues in an organism may share the same genomic DNA, they can differ greatly in what regions are transcribed into RNA and in their patterns of RNA processing. By reviewing the history of transcriptomics, we can see the advantages of RNA sequencing using a full-length transcript approach become clearer.
Rebecca Johnson, director of the Australian Museum Research Institute presents finding from de novo sequencing of the koala genome. Using PacBio sequencing the Koala Genome Consortium obtained an assembly with an N50 of 11.5 Mbp and have undertaken functional genomic analysis highlighting the unique genes associated with lactation and immune function of koalas. Johnson goes on to describe efforts to obtain a chromosome level assembly and current work using ‘super scaffolding’ to compare shared synteny across diverse lineages to generate chromosome scaffold maps.
At PAG 2017, Rockefeller University’s Erich Jarvis offered an in-depth comparison of methods for generating highly contiguous genome assemblies, using hummingbird as the basis to evaluate a number of sequencing and scaffolding technologies. Analyses include gene content, error rate, chromosome metrics, and more. Plus: a long-read look at four genes associated with vocal learning.
Michael Lutz, from the Duke University Medical Center, discussed a recently published software tool that can now be used in a pipeline with SMRT Sequencing data to find structural variant biomarkers for neurodegenerative diseases with a focus on Alzheimer’s disease, ALS, and Lewy body dementia. His team is particularly interested in short sequence repeats and short tandem repeats, which have already been implicated in neurodegenerative disease.
In this PAG 2018 presentation, Bill Ballard of University of New South Wales, presents research into the origins and potential domestication of the Australian dingo, winner of the 2017 SMRT Grant Program. Ballard used PacBio long-read whole genome sequencing to sequence and assemble the dingo genome. Ongoing work focuses on identifying common and unique genomic regions with a domestic dog genome to better understand shared ancestry and ultimately to aid in dingo conservation efforts.
In this webinar, Barbara Block of Stanford University and Paul Peluso of PacBio describe how plant and animal whole genome sequencing remains a challenging endeavor, particularly due to genome size, high density of repetitive elements, and heterozygosity. Because of this, often only a single, fragmented reference genome is available for a species, genus, or even family, limiting the ability to answer important biological questions. Looking at the trends in genome assembly and annotation over the past year, such as pan-genomes and phasing, this webinar explores how Single Molecule, Real-Time (SMRT) Sequencing is utilized to develop long-lasting genomic resources, supporting research…
In this presentation, Justin Blethrow provides an overview of recent and upcoming developments across PacBio’s SMRT Sequencing product portfolio, and their implications for PacBio’s major applications. In presenting the product roadmap, he illustrates how key new products coming in 2019 will make SMRT Sequencing dramatically more affordable and easy to use, and how they will enable customers to routinely produce highly accurate, single-molecule long reads.
In this presentation, Sonja Vernes of the Max Plank Institute shares her work with the Bat1K project which aims to catalog the genetic diversity of all living bat species. She highlights the unique biology of bats, from their widely varying sizes to their capacity for healthy aging and disease resistance and provides recent findings from ongoing efforts to sequence and annotate the genomes of 21 phylogenetic families of bats.
In this PacBio User Group Meeting lightning talk, Alexandra Pike of MIT presents a study of TIN2, a telomere-binding protein, which is mutated in some short telomere syndromes. By pairing the Iso-Seq method with CRISPR, her team revealed a previously uncharacterized TIN2 isoform that may have a functional difference for individuals with these syndromes.
Mark Blaxter, project lead of the Sanger Institute’s Darwin Tree of Life, shared an update of the ambitious effort to sequence all 60,000 species believed to be on the British Isles over the next 12 years in this presentation at the PAG 2020 Conference. The Sanger team has already generated data for 94 species, including 44 new moth and butterfly (Lepidoptera) PacBio assemblies, which Blaxter describes in this presentation.
PacBio Sequencing is powered by Single Molecule, Real-Time (SMRT) Sequencing technology. The Sequel II System offers the affordable, highly accurate long reads needed to gain comprehensive views of genomes, transcriptomes, and epigenomes. Watch this video to get to know the Sequel II System, explore the key advantages of SMRT Sequencing, and learn how its applications can be used to drive new discoveries.