fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Complete Genome Sequences of Bacteriocin-Producing Streptococcus thermophilus Strains ST106 and ST109.

Streptococcus thermophilus strains ST106 and ST109 produce broad-spectrum bacteriocins encoded within a bacteriocin-like peptide (blp) gene cluster. This study reports the complete genome sequences for both strains, with the ST109 chromosome containing 1,788,866 nucleotides (nt) and 1,572 predicted genes, and ST106 having 1,856,083 nt and 1,601 predicted genes.

Read More »

Tuesday, April 21, 2020

Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes.

African cichlid fishes are well known for their rapid radiations and are a model system for studying evolutionary processes. Here we compare multiple, high-quality, chromosome-scale genome assemblies to elucidate the genetic mechanisms underlying cichlid diversification and study how genome structure evolves in rapidly radiating lineages.We re-anchored our recent assembly of the Nile tilapia (Oreochromis niloticus) genome using a new high-density genetic map. We also developed a new de novo genome assembly of the Lake Malawi cichlid, Metriaclima zebra, using high-coverage Pacific Biosciences sequencing, and anchored contigs to linkage groups (LGs) using 4 different genetic maps. These new anchored assemblies allow…

Read More »

Tuesday, April 21, 2020

Remedial Treatment of Corroded Iron Objects by Environmental Aeromonas Isolates.

Using bacteria to transform reactive corrosion products into stable compounds represents an alternative to traditional methods employed in iron conservation. Two environmental Aeromonas strains (CA23 and CU5) were used to transform ferric iron corrosion products (goethite and lepidocrocite) into stable ferrous iron-bearing minerals (vivianite and siderite). A genomic and transcriptomic approach was used to analyze the metabolic traits of these strains and to evaluate their pathogenic potential. Although genes involved in solid-phase iron reduction were identified, key genes present in other environmental iron-reducing species are missing from the genome of CU5. Several pathogenicity factors were identified in the genomes of…

Read More »

Tuesday, April 21, 2020

Genome assembly and annotation of the Trichoplusia ni Tni-FNL insect cell line enabled by long-read technologies.

Trichoplusiani derived cell lines are commonly used to enable recombinant protein expression via baculovirus infection to generate materials approved for clinical use and in clinical trials. In order to develop systems biology and genome engineering tools to improve protein expression in this host, we performed de novo genome assembly of the Trichoplusiani-derived cell line Tni-FNL.By integration of PacBio single-molecule sequencing, Bionano optical mapping, and 10X Genomics linked-reads data, we have produced a draft genome assembly of Tni-FNL.Our assembly contains 280 scaffolds, with a N50 scaffold size of 2.3 Mb and a total length of 359 Mb. Annotation of the Tni-FNL…

Read More »

Tuesday, April 21, 2020

Into the Thermus Mobilome: Presence, Diversity and Recent Activities of Insertion Sequences Across Thermus spp.

A high level of transposon-mediated genome rearrangement is a common trait among microorganisms isolated from thermal environments, probably contributing to the extraordinary genomic plasticity and horizontal gene transfer (HGT) observed in these habitats. In this work, active and inactive insertion sequences (ISs) spanning the sequenced members of the genus Thermus were characterized, with special emphasis on three T. thermophilus strains: HB27, HB8, and NAR1. A large number of full ISs and fragments derived from different IS families were found, concentrating within megaplasmids present in most isolates. Potentially active ISs were identified through analysis of transposase integrity, and domestication-related transposition events…

Read More »

Tuesday, April 21, 2020

Modern technologies and algorithms for scaffolding assembled genomes.

The computational reconstruction of genome sequences from shotgun sequencing data has been greatly simplified by the advent of sequencing technologies that generate long reads. In the case of relatively small genomes (e.g., bacterial or viral), complete genome sequences can frequently be reconstructed computationally without the need for further experiments. However, large and complex genomes, such as those of most animals and plants, continue to pose significant challenges. In such genomes, assembly software produces incomplete and fragmented reconstructions that require additional experimentally derived information and manual intervention in order to reconstruct individual chromosome arms. Recent technologies originally designed to capture chromatin…

Read More »

Tuesday, April 21, 2020

Comparative genomic analysis of eight novel haloalkaliphilic bacteriophages from Lake Elmenteita, Kenya.

We report complete genome sequences of eight bacteriophages isolated from Haloalkaline Lake Elmenteita found on the floor of Kenyan Rift Valley. The bacteriophages were sequenced, annotated and a comparative genomic analysis using various Bioinformatics tools carried out to determine relatedness of the bacteriophages to each other, and to those in public databases. Basic genome properties like genome size, percentage coding density, number of open reading frames, percentage GC content and gene organizations revealed the bacteriophages had no relationship to each other. Comparison to other nucleotide sequences in GenBank database showed no significant similarities hence novel. At the amino acid level,…

Read More »

Tuesday, April 21, 2020

High-Quality Complete Genome Sequences of Three Pseudomonas aeruginosa Isolates Retrieved from Patients Hospitalized in Intensive Care Units.

Pseudomonas aeruginosa is one of the major Gram-negative pathogens responsible for hospital-acquired infections. Here, we present high-quality genome sequences of isolates from three P. aeruginosa genotypes retrieved from patients hospitalized in intensive care units. PacBio reads were assembled into a single contig, which was afterward corrected using Illumina HiSeq reads.

Read More »

Tuesday, April 21, 2020

Complete Genome Sequences of Two Isolates of Fusobacterium necrophorum subsp. funduliforme, Obtained from Blood from Patients with Lemierre’s Syndrome.

Two isolates (F1260 and F1291) of Fusobacterium necrophorum subsp. funduliforme were recovered from blood from patients with Lemierre’s syndrome. Here, we report the complete genome sequences of these two isolates. The genomes of F1260 and F1291 comprise one chromosome with lengths of 2.29 and 2.14?Mb, respectively.

Read More »

Tuesday, April 21, 2020

Whole-Genome Sequences of Two Pseudoalteromonas piscicida Strains, DE1-A and DE2-A, with Strong Antibacterial Activity against Vibrio vulnificus.

Highly vesiculated Pseudoalteromonas piscicida strains DE1-A and DE2-A were isolated from seawater and show bactericidal properties toward Vibrio vulnificus and other Gram-positive and Gram-negative bacteria. Here, we report the complete genome sequences of these two P. piscicida strains and identify proteolytic enzymes potentially involved in their antibacterial properties.

Read More »

Tuesday, April 21, 2020

Complete Genome Sequences of Four Salmonella enterica Strains (Including Those of Serotypes Montevideo, Mbandaka, and Lubbock) Isolated from Peripheral Lymph Nodes of Healthy Cattle.

Salmonella enterica serotype Lubbock emerged most likely from a Salmonella enterica serotype Mbandaka ancestor that acquired by recombination the fliC operon from Salmonella enterica serotype Montevideo. Here, we report the complete genome sequence of two S. Lubbock, one S. Montevideo, and one S. Mbandaka strain isolated from bovine lymph nodes.

Read More »

Tuesday, April 21, 2020

Complete Genome Sequences of Three Shiga Toxin-Producing Escherichia coli O111:H8 Strains Exhibiting an Aggregation Phenotype.

Non-O157 Shiga toxin-producing Escherichia coli (STEC) strains are a common source of foodborne illness. STEC O111 is among the most prevalent non-O157 STEC serogroups. Few completed genomes of STEC O111 strains have been reported to date. We report here the complete genomic sequences of three O111:H8 strains that display a distinct aggregation phenotype.

Read More »

Tuesday, April 21, 2020

Distribution and Genetic Diversity of Genes Involved in Quorum Sensing and Prodigiosin Biosynthesis in the Complete Genome Sequences of Serratia marcescens.

Quorum sensing is a cell density-dependent regulation of gene expression. N-acyl-l-homoserine lactone (AHL) is a major quorum-sensing signaling molecule in gram-negative bacteria and synthesized by the LuxI family protein. The genus Serratia is known as a producer of the red pigment, prodigiosin, whose biosynthesis is dependent on the pig gene cluster. Some Serratia strains regulate prodigiosin production via AHL-mediated quorum sensing, whereas there is red-pigmented Serratia strains without quorum-sensing system. In addition, nonpigmented Serratia marcescens, which does not produce prodigiosin, has also been isolated from natural and clinical environments. In this study, we aim to reveal the distribution and genetic…

Read More »

1 2 3 4

Subscribe for blog updates:

Archives