fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, February 5, 2021

Podcast: Reference genome making major strides in ethnic diversity, says Valerie Schneider, NCBI

Valerie Schneider of the National Center for Biotechnology Information discuss how the Genome Reference Consortium (GRC) is bringing more ethnic diversity to the latest human reference assembly (GRCh38) by adding patches and alternate loci scaffolds. Scientists working with population graphs are among the early adopters of these new alternate loci scaffolds. She also discusses work underway at the McDonnell Genome Institute at Washington University to generate a set of high-quality, de novo whole genomes from a wide variety of populations. The new ethnic genomes “are also intended to stand on their own as complements to the reference so users can…

Read More »

Friday, February 5, 2021

AGBT Virtual Poster: Interspecies interation amoung meat spoilage-related lactic acid bacteria

In this AGBT 2017 poster, the University of Helsinki’s Petri Auevinen reports on efforts to understand bacteria that grow on, and subsequently spoil, food. This analysis monitored DNA modifications and transcriptomic changes in three species of lactic acid bacteria. Scientists discovered that the organisms’ metabolic profiles change substantially when grown together compared to those cultured individually, and are now studying how Cas protein activity changes under these conditions too.

Read More »

Friday, February 5, 2021

AGBT Virtual Poster: Single-molecule sequencing reveals the presence of distinct JC polyomavirus populations in patients with progressive multifocal leukoencephalopathy

At AGBT 2017, Lars Paulin from the University of Helsinki presented this poster on whole genome sequencing of the virus responsible for progressive multifocal leukoencephalopathy, a rare and dangerous brain infection. His team used long amplicon analysis to resolve the whole virus genome from three patient samples, pooled them for SMRT Sequencing, and identified variants and rearrangements. This work represents the first time the viral genome was sequenced from patients.

Read More »

Friday, February 5, 2021

Podcast: Huh? 30 million Americans have a rare disease? Howard Jacob on the state of clinical sequencing

Howard Jacob, Chief Genomics Officer at the HudsonAlpha Institute for Biotechnology, explored the role of genomics in diagnosing rare diseases. In this podcast he shared his views on the economics of clinical sequencing and how long-read sequencing is advancing the ability to sequence an individual’s genome –de novo– and use structural variant calling to make clinical diagnoses. He concluded with the hurdles limiting adoption of clinical sequencing and his vision for the future of genomic medicine.

Read More »

Friday, February 5, 2021

Webinar: SMRT Sequencing applications in plant and animal sciences: an overview

In this webinar, Emily Hatas of PacBio shares information about the applications and benefits of SMRT Sequencing in plant and animal biology, agriculture, and industrial research fields. This session contains an overview of several applications: whole-genome sequencing for de novo assembly; transcript isoform sequencing (Iso-Seq) method for genome annotation; targeted sequencing solutions; and metagenomics and microbial interactions. High-level workflows and best practices are discussed for key applications.

Read More »

Friday, February 5, 2021

Tutorial: Minor variant analysis [SMRT Link v5.0.0]

This tutorial provides an overview of the Minor Variants Analysis application in SMRT Link and a live demo of how to launch an analysis in SMRT Link and interpret the results. This application identifies and phases minor single nucleotide variants in complex populations.

Read More »

Friday, February 5, 2021

Webinar: An introduction to PacBio’s long-read sequencing & how it has been used to make important scientific discoveries

In this Webinar, we will give an introduction to Pacific Biosciences’ single molecule, real-time (SMRT) sequencing. After showing how the system works, we will discuss the main features of the technology with an emphasis on the difference between systematic error and random error and how SMRT sequencing produces better consensus accuracy than other systems. Following this, we will discuss several ground-breaking discoveries in medical science that were made possible by the longs reads and high accuracy of SMRT Sequencing.

Read More »

Friday, February 5, 2021

PAG Conference: Domestication: through the canines of a dingo

In this PAG 2018 presentation, Bill Ballard of University of New South Wales, presents research into the origins and potential domestication of the Australian dingo, winner of the 2017 SMRT Grant Program. Ballard used PacBio long-read whole genome sequencing to sequence and assemble the dingo genome. Ongoing work focuses on identifying common and unique genomic regions with a domestic dog genome to better understand shared ancestry and ultimately to aid in dingo conservation efforts.

Read More »

Friday, February 5, 2021

PAG Conference: How SMRT Sequencing is accelerating plant and animal genomics

In this presentation, Justin Blethrow provides an overview of recent and upcoming developments across PacBio’s SMRT Sequencing product portfolio, and their implications for PacBio’s major applications. In presenting the product roadmap, he illustrates how key new products coming in 2019 will make SMRT Sequencing dramatically more affordable and easy to use, and how they will enable customers to routinely produce highly accurate, single-molecule long reads.

Read More »

Friday, February 5, 2021

Webinar: Long-read sequencing and infectious disease: New insights into longstanding challenges

One of the longstanding challenges in infectious disease has been the lack of high-quality reference genomes. However, developments in genome sequencing are helping researchers overcome this barrier. Recently, highly contiguous genome assemblies of Plasmodium falciparum, Aedes aegypti, and multiple trypanosomes have become available. The number of reference genomes for bacteria that cause infectious disease is similarly expanding rapidly. In this webinar Meredith Ashby discusses how these new resources are already yielding new biological insights into critical questions in infectious disease research, including how parasites evade the immune system add how pathogens are adapting to evolutionary pressures.

Read More »

Friday, February 5, 2021

Webinar: Smoking out structural variants in the cannabis genome

In this webinar, Sarah Kingan, Staff Scientist, PacBio, and Kevin McKernan, Founder and Chief Science Officer, Medicinal Genomics, describe their work assembling the most comprehensive and complete cannabis genome of a Type II (THCA and CBDA producing) plant. They also share the latest advances in cannabis genomics, including how PacBio long-read sequencing enables high-quality genomics research in plants, annotation of the cannabis reference genome using full-length transcript sequencing, and new insights into cannabinoid synthesis across different types of cannabis plants.

Read More »

Friday, February 5, 2021

User Group Meeting: Sequencing chemistry & application updates

To start Day 1 of the PacBio User Group Meeting, Jonas Korlach, PacBio CSO, provides an update on the latest releases and performance metrics for the Sequel II System. The longest reads generated on this system with the SMRT Cell 8M now go beyond 175,000 bases, while maintaining extremely high accuracy. HiFi mode, for example, uses circular consensus sequencing to achieve accuracy of Q40 or even Q50.

Read More »

Friday, February 5, 2021

User Group Meeting: Long-read RNA Sequencing in neglected human parasites

In this PacBio User Group Meeting presentation, Nic Wheeler of University of Wisconsin-Madison, speaks about RNA sequencing for filarial nematodes associated with understudied tropical diseases. His team used Iso-Seq analysis to improve gene models and achieve better transcriptome coverage for these worms, which typically have poorly annotated and fragmented genome assemblies. While getting enough RNA to study is a technical challenge, the group still managed to generate full-length isoforms, many of which were novel or contained novel junctions.

Read More »

Friday, February 5, 2021

ASHG PacBio Workshop: Long-read sequencing in oncology and population research: Perspectives and opportunities

In this presentation, Shawn Levy from the HudsonAlpha Institute for Biotechnology and HudsonAlpha Discovery offers a look at his team’s early access experience with the Sequel II System. Recent work includes a project designed to improve sequencing results from FFPE samples with long-read data. The protocol is still being optimized, but preliminary results indicate that SMRT Sequencing improves the quality of data that can be produced from these highly degraded samples. Looking ahead, Levy’s team will be using SMRT Sequencing to generate about 7,000 long-read genome assemblies for the All of Us program.

Read More »

1 3 4 5 6 7 183

Subscribe for blog updates:

Archives