X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, January 7, 2021

Whitepaper: Structural variation in the human genome

Structural variation accounts for much of the variation among human genomes. Structural variants of all types are known to cause Mendelian disease and contribute to complex disease. Learn how long-read sequencing is enabling detection of the full spectrum of structural variants to advance the study of human disease, evolution and genetic diversity.

Read More »

Wednesday, January 6, 2021

Podcast: Major sequencing projects should be done with long reads

Dan Geraghty explains that while there have been decades’ worth of studies associating the genetics of the major histocompatibility complex (MHC), and the highly polymorphic HLA class 1 and 2 genes, we still haven’t found the key mutations for a variety of different autoimmune diseases such as type 1 diabetes, rheumatoid arthritis, multiple sclerosis, and others. Enormous amounts of linkage disequilibrium in these regions are one factor, as is getting information in phase, so larger stretches of sequence are needed. Recently Geraghty has begun using SMRT Technology with hopes of drilling down to the causal genetics. 

Read More »

Wednesday, January 6, 2021

ASHG PacBio Workshop: SMRT Sequencing as a translational research tool to investigate germline, somatic and infectious diseases

Melissa Laird Smith discussed how the Icahn School of Medicine at Mount Sinai uses long-read sequencing for translational research. She gave several examples of targeted sequencing projects run on the Sequel System including CYP2D6, phased mutations of GLA in Fabry’s disease, structural variation breakpoint validation in glioblastoma, and full-length immune profiling of TCR sequences.

Read More »

Wednesday, January 6, 2021

Webinar: Addressing “NGS Dead Zones” with third generation PacBio sequencing

SMRT Sequencing is a DNA sequencing technology characterized by long read lengths and high consensus accuracy, regardless of the sequence complexity or GC content of the DNA sample. These characteristics can be harnessed to address medically relevant genes, mRNA transcripts, and other genomic features that are otherwise difficult or impossible to resolve. I will describe examples for such new clinical research in diverse areas, including full-length gene sequencing with allelic haplotype phasing, gene/pseudogene discrimination, sequencing extreme DNA contexts, high-resolution pharmacogenomics, biomarker discovery, structural variant resolution, full-length mRNA isoform cataloging, and direct methylation detection.

Read More »

Wednesday, January 6, 2021

AGBT Conference: A community effort using multiple technologies to produce a dramatically improved genome assembly of the Zika virus mosquito vector

At AGBT 2017, the Broad Institute’s Daniel Neafsey reported a large collaborative effort to sequence the mosquito that carries Zika virus. The team is using long-read PacBio sequencing to produce a high-quality genome assembly, which Neafsey expects will replace the 10-year-old Sanger assembly for Aedes aegypti. The new assembly reduces the number of contigs by at least 10-fold, boosts the contig N50 to nearly 2 Mb, and features more complete gene content.

Read More »

Wednesday, January 6, 2021

AGBT Virtual Poster: Generation of local reference genomes using PacBio and BioNano data, and analysis of the “dark matter” of structural variants in 1000 Swedish genomes

In this AGBT 2017 poster, Ulf Gyllensten from Uppsala University presents two local reference genomes generated with PacBio and Bionano Genomics data. These assemblies include structural variation and repetitive regions that have been missed with previous short-read efforts, including some new genes not annotated in the human reference genome.

Read More »

Wednesday, January 6, 2021

Webinar: Beginner’s guide to PacBio SMRT Sequencing data analysis

PacBio SMRT Sequencing is fast changing the genomics space with its long reads and high consensus sequence accuracy, providing the most comprehensive view of the genome and transcriptome. In this webinar, I will talk about the various data analysis tools available in PacBio’s data analysis suite – SMRT Link – as well as 3rd party tools available. Key applications addressed in this talk are: Genome Assemblies, Structural Variant Analysis, Long Amplicon and Targeted Sequencing, Barcoding Strategies, Iso-Seq Analysis for Full-length Transcript Sequencing

Read More »

Wednesday, January 6, 2021

PAG Conference: The Bat1K project: bat genome, biology and implications

In this presentation, Sonja Vernes of the Max Plank Institute shares her work with the Bat1K project which aims to catalog the genetic diversity of all living bat species. She highlights the unique biology of bats, from their widely varying sizes to their capacity for healthy aging and disease resistance and provides recent findings from ongoing efforts to sequence and annotate the genomes of 21 phylogenetic families of bats.

Read More »

Wednesday, January 6, 2021

ASHG PacBio Workshop: PacBio product updates and roadmap – announcing the release of new chemistry and software

In this ASHG workshop presentation , Jonas Korlach, CSO of PacBio, walked attendees through recent product updates and the coming technology roadmap. The Sequel System 6.0 release offered major improvements to accuracy, throughput, structural variant calling, and large-insert libraries, he said, showing examples of 35 kb libraries. Looking ahead, Korlach said that the V2 express library preparation product should be available early in 2019, with the new 8M SMRT Cell being introduced sometime later.

Read More »

Wednesday, January 6, 2021

PAG Conference: Dawn of the crop pangenome era

To make improvements to crops like corn, soybeans, and canola, scientists at Corteva are building a compendium of crop genomics resources to provide actionable sequence info for genetic discovery, gene-editing, and seed product development. Hear how Kevin Fengler, Comparative Genomics Lead of Data Science and Bioinformatics at Corteva, is using PacBio sequences to build visualization tools and genome assembly pipelines as a contribution to this effort.

Read More »

Wednesday, January 6, 2021

Webinar: Sequence with Confidence – Introducing the Sequel II System

In this webinar, Jonas Korlach, Chief Scientific Officer, PacBio provides an overview of the features and the advantages of the new Sequel II System. Kiran Garimella, Senior Computational Scientist, Broad Institute of MIT and Harvard University, describes his work sequencing humans with HiFi reads enabling discovery of structural variants undetectable in short reads. Luke Tallon, Scientific Director, Genomics Resource Center, Institute for Genome Sciences, University of Maryland School of Medicine, covers the GRC’s work on bacterial multiplexing, 16S microbiome profiling, and shotgun metagenomics. Finally, Shane McCarthy, Senior Research Associate, University of Cambridge, focuses on the scaling and affordability of high-quality…

Read More »

Wednesday, January 6, 2021

User Group Meeting: Sequencing chemistry & application updates

To start Day 1 of the PacBio User Group Meeting, Jonas Korlach, PacBio CSO, provides an update on the latest releases and performance metrics for the Sequel II System. The longest reads generated on this system with the SMRT Cell 8M now go beyond 175,000 bases, while maintaining extremely high accuracy. HiFi mode, for example, uses circular consensus sequencing to achieve accuracy of Q40 or even Q50.

Read More »

Wednesday, January 6, 2021

PAG Conference: The impact of highly accurate PacBio sequence data on the assembly of a tetraploid rose

In this presentation at PAG 2020, Bart Nijland of Genetwister Technologies explains how his team set out to make a haplotype-aware assembly of the highly complex tetraploid Rosa x hybrida L. genome in order to capture its full range of genetic variation. HiFi reads generated from PacBio’s Sequel II System have made it possible to parse out critical information from many of the plant’s parental genes.

Read More »

Wednesday, January 6, 2021

PAG Conference: Endless forms: Genomes from the Darwin Tree of Life Project

Mark Blaxter, project lead of the Sanger Institute’s Darwin Tree of Life, shared an update of the ambitious effort to sequence all 60,000 species believed to be on the British Isles over the next 12 years in this presentation at the PAG 2020 Conference. The Sanger team has already generated data for 94 species, including 44 new moth and butterfly (Lepidoptera) PacBio assemblies, which Blaxter describes in this presentation.

Read More »

1 2 3 5

Subscribe for blog updates:

Archives